Java

for Absolute
Beginners

Learn to Program the Fundamentals
the Java 9+ Way

luliana Cosmina

Apress’

Java for Absolute
Beginners

Learn to Program the Fundamentals
the Java 9+ Way

luliana Cosmina

Apress’

Java for Absolute Beginners: Learn to Program the Fundamentals the Java 9+ Way

Tuliana Cosmina
Edinburgh, UK

ISBN-13 (pbk): 978-1-4842-3777-9 ISBN-13 (electronic): 978-1-4842-3778-6
https://doi.org/10.1007/978-1-4842-3778-6

Library of Congress Control Number: 2018964482

Copyright © 2018 by Iuliana Cosmina

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484237779. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3778-6

This book is dedicated to all men that told me
software engineering is not for women.

And to that one professor that told me I'm not PhD material.
How do ya’ like them apples?

Table of Contents

About the AUROKccoveemmssmnmnsmsssss s nn s nnnnnn s xiii
About the Technical REVIEWETccvcessssnsssssansssssssssssnsssssnsssssssssssnsssssnsssssnsssssnssnssns XV
AcknNoWIedgmentsccccuusemnnmmssssnnnmsssssssnsssssssnnssssssnnnssssssnnnssssssnnssssssnnnnsssssnnnnssssnnns Xvii
INtroductioncccicemnsenmssssnnmsssnnmsssnnsssansssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnnnnssnnnsns Xix
Chapter 1: An Introduction to Java and Its HiStorycccccmmmnnsennnnnssssnsssnssssnsnnnns 1
WHO ThiS BOOK IS FOF......ceiieercircerce e 2
How This BOOK IS STrUCLUIEA.........c.coeeeecrercrereseee s 3
CONVENTIONS ... sesese s sse e e e e s s e se s e s re e e e e e nae e s R e e e e e e nnnnnes 4
When Java Was Owned by Sun MICroSYSIEMS........c.cuecverereresesnsesssesessssesessesessse s sessesessesessnnes 5
Why IS Java POrabI@?ccvireiinirrnene st 8

Sun Microsystem’s Java VEISIONScocveeverenmrreserensessssesesssesessessssssssssesssssssssssssssssssssesenns 10
Oracle TAKES QVENcovecerrreiricserree s se e n s 15
What the FUtUre HoldS ... s 21

o (] (0|1 (O 21
Chapter 2: Preparing Your Development Environmentccccoccemnnnnsnnnnnnssssssnnnns 23
INSTAIIING JAVA.......coeicr e 24
The JAVA_HOME Environment Variable........c.cccuiiiiniiiiissssssssssssssssssssssssssssssssens 29
JAVA _HOME 0N WINAOWSuviiiiiiiiiiisiissinnsssssssssssssssssssssssssssssssssssansssnssanssssssssssssssasssanssanans 30
JAVA_HOME 0N MACOS.... ..ot sss s ssn s s ss s s s s s ss s sn s sn s s s sa s san s san s sanasanaes 35
JAVA_HOME 0N LINUX c.vuervecreeseessssesessesessesessssesessesessssesssssssssssssssnsssssssssssnsssssssssssssssssssssssssnns 36
INSTAIING GIAUIEcveeveeeereeree e e s nr s 37
INSTAIING GiL.....veeeeieeerese s r e r s 38
INSTAIlNG @ JAVA IDE.........ccoeeeieitrcere st se e s s st sa e e ae s p e e naennen 39

£ 11114 7R 47

TABLE OF CONTENTS

Chapter 3: Getting Your Feet Wet.........ccocccmmnnnnmmmmnnsssnnnmmssssssnmnssssssnssssssssssssssssnnsnnss 49
L] T TS 1T RS 49
Java Fundamental Building BIOCKSccccuiirnnininn s se s sessessens 56

ACCESS MOGIfIEIS ... s e n e r e e e nnnne s 60
INtroducCing MOTUIES.......coiiirre e e e e e r e e nne s 64
Configuring MOUUIEScovvirireresr e s e e e e nne s 67
Determining the Structure: A Java Project ... e 69
Explaining and Enriching the Hello WOrld! Class..........ccoverrnerereneressmsesesesesesessesessesessesesessesenns 89
SUMIMAIY ...ttt n e Re e e e e e e Re e s e e e nen e e e Re e Re e nen e e nsnnn s 96
Chapter 4: Java SyNtaX......ccusscenmemsssnnnsmssssnnnsessssnsnsessssnnnsessssnsnsssssnnnnsssssnnnnsssssnnnnnsnss 99
Base Rules of Writing Java COUEcccvvvrererrnneniererssersese s sessessessessssessessessssessessessesssssssessens 100
o T 16 1o T I L= T L 101
10 00T BT o 10 o OO 101
JAVA “GraAMMAI” ... s 103
JaVa [ABNTITIErSciviecc i —————— 106
Java COMMENTES ... s 107
B AT 0 o] 1= B 1 T 107
CIASSES ...uucueuerrsrsseseesess s 108
ENUMS . 125
INTEITACES ...ccveiccccri s 129
(-] 0 0] S 139
C L] T 1 PR 145
JaVva RESEIVEA WOIAS..........ccceeeeeercereec s se e se s s ae e e e nnenens 147
£ T T 151

Chapter 5: Data TYPeS....ccciruusummmmmssssnnnmsssssnsnmsssssnnnssssssnnsssssssnnnssssssnnnsssssnnnsessssnnnnss 153
Stack and HEap MEMOIY.......ccvvrererirrerere e s e e se e s sae e s sae s e e s e saesae e s e saesnes 153
Introduction 10 Java Data TYPESccucererirrin e s sa e s 159

Primitive Data TYPES ...c.ceverieriiriie s rer e s a e s s n e s a e s 159
Reference Data TYPESccvvvvrirre s re e s e e s s r e s sn e e 161

TABLE OF CONTENTS

JaVa PriMItIVE TYPES ettt a e s s e s s s n e s 165
The BOOIEAN TYPE....coceiieeriereritr et re e s s a e s s e e e s s n e e 165
THE CRAI TYPE ..o e e e e e s a e s 166
10T T T=T g o 11 111 14T 167
Real PriMiItIVES.covivieceseriniscsscse s 170

JAVA RETEIENCE TYPES ...uveeerereereerireree st st s e s e s s s e e sa e s st s e e sae s s e e a e sae s e e e e snesae e e e aesnesannaes 173
4 1S 177
LI (0T 1 L= O 183
ESCAPING CAraCIEIS. ...cccvuerreerererererserersessssessessessssessessesaesssessessessssessessesssssssessesassansensesaes 187
WEAPPET ClASSES..ueruerrerererersersesersersessesssssssessessesssssssessesssssssessessesssssssessessessssessessesssssssessesses 189
DAte TIME AP ... 191
L0017 (0] S 196
CONCUITENCY SPECITIC TYPES..euerrerrrrerrererressrsersersessesessessessessssessessesseses e ssesaeses e ssessesssssssesneses 201

£ 11134 7 206

Chapter 6: OPeratorsccccuussesmmsssssnsnmssssssnsmsssssnnnssssssnnnsssssnnnnessssnnnnessssnnnssssssnnnnss 207

The AsSIgNMENT OPEIatOr (=) ...cccevererrererrnseseseserreserrssesesese s s s srssesessssessssesessssssssnens 208

Explicit Type Conversion (type) and inStanCeof...........ccucevrerrnsesnsesnneses s sesesenns 211

0T TeT Ttz I 0] 0T = (0] £ ORI 214
L1 T 0 L] L (0 OO 214
3Ty Fe LT 0T (0] O 217
Relational OPerators. e e e 223
BitWiSe OPEIAtOrSccevvereerreirere s s p e s 227
BItWiSe NOT ...t e 227
BItWiISE ANDceuerieriiirere et e e bR e e e an 228
BitwiSe INCIUSIVE OR.......coceeiieircscree e 230
BitwiSe EXCIUSIVE QRcccceirierirresersne s sn s s se s sss s s s ssnsis 231
LOGICAI OPEIALOFScveceeveeriserirrese s p e r e nnnna e 233
Shift OPEIAIONSecerere e e e e s nne s 238
The EIVIS OPEIALOrccccvcererresirsine st s s 241

LT 11134 RS 242

vii

TABLE OF CONTENTS

Chapter 7: Controlling the FIOWccccusseemmmmssssnnnmssssssnnmssssssnssssssssnssssssssssssssssnnnss 243
if-1SE STATBMENT ... s 244
SWITCH STAIEMENL ... 250
LOOPING STAtEMENTS.......ccoveerereeree s 256

FOr SEALEMENTS......cceeececer e e nne s 257
WHIlE STAtEMENT ..o e 263
do-While STAtEMENT...........cceee s 268
Breaking Loops and SKipping SIEPS ..o 271
break STateMENt.........ccovciiccreser s 27
CONtINUE SEALEMENTcce e 273
return Statement ... ——————————— 275
Controlling the Flow Using try-catch ConsStructionsc.ccovvevrnnernsessnesensse e 277
£ 1§14 RS 280

Chapter 8: The Stream APIccoccemmmnnssnnmmmmsssnnmmsssssnmmsssssmmssssnsssss s 281
INtroduction t0 STrEAMScceeeerirr e s 281
Creating SIrEAMS ..o e b e e e nns 284

Creating Streams from CollECLIONS..........cccvcvvriniin s s 284
Creating Streams frOM AITAYSccccverennninine s s 287
Creating EmpPty STreams.........ccvinininnnsirsne e 289
Creating Finite STreams........ccciiiinin s e e 289
Streams of Primitives and Streams of Strings ..o 292
A Short Introduction 10 Optional ..o ———————— 295
HOW 10 USE SIrBAMS......ceivecrirererreesre s e s s ses s 298
Terminal Functions: forEach and forEachOrderedccovoerenreernresereeserese s 300
Intermediate Operation filter and Terminal Operation t0Array..........c.cccerierinrnininnsnsenens 302
Intermediate Operations map and flatMap and Terminal Operation collect..............c.c...... 303
Intermediate Operation sorted and Terminal Operation findFirstc.cccovvnininiinicnnenn 306
Intermediate Operation distinct and Terminal Operation count...........cccooevvvnininninicnenn 306
Intermediate Operation limit and Terminal Operations min and max..........c.cccceeevvieniennenn 307
Terminal Operations SUM and redUCE.........ccoceeerrrrrrienn s 307

viil

TABLE OF CONTENTS

Intermediate OPeration PEEK........ccvvvrererrrerreriere s s s e sae s s ssesaesesnesne s 308
Intermediate Operation skip and Terminal Operations findAny, anyMatch,
allMatch, and NONEMALICH ... —————————— 309
Debugging SIream COEcccvreeriicrnerire s e 310
SUMIMAIY ..ttt E e e e e b e e e e e AR e e e e e Re e Re R e e e e e Re R e e e e e aennn 314
Chapter 9: Debugging, Testing, and Documenting.......ccccuussssnnrsssssnnsssssssnnssssssnnnnss 317
(DL oo oo OSSR 317
T o 1 T P 318
Logging with SLF4J and LOghack..........ccccuerrminnenmnese s s ssssessnnes 337
Debug USiNG ASSEITIONS........cccveriereeressesese s 345
Step-by-Step DEDUGGINGc.ccvrrererererrrerere e e 348
Inspect Running Application Using Java TOOIS...........cccviernnnnnieninnnsnse e 351
Accessing the Java ProCESS APl ... s sess s ssanes 362
5] (1o OO 369
A Small Introduction t0 TESTING......c.ccerererirernserrneser s 370
TeSt COUE LOCALIONcovvuererreeriee s s s sre e sr s s 371
ApPPLICALION 10 TESTceivicseirererre s sr e nnna s 372
DOCUMENTING.....cecererereerercer s e ae s a e se s e s b e s e s s b e e e e e e R e ae e e e saeeae s e e e nannnees 397
£ 1134 7R 408
Chapter 10: Making Your Application Interactive.......cccousssemmnrnssssnnsssssssnssssssssnnnss 409
Reading Data from the Command LiNg ..o 409
Reading User Data USing SYSTEMLIN ..o 410
USING SCANNETcviireriece et p e b e ne s 411
Reading User Data with java.io.CoNnSO0Ie.........c.ccoceviiririninnnsn s 417
Build Applications USING SWINQ........cccccrreererenerenernsesessesesese s s sessssessssesssssssssssenns 420
INtrOdUCING JAVAFX ..o e 432
Internationalization ... —————————— 442
Build @ Webh APPIICALIONccevveeeriereresirserere s sese s sresessessessesessessessessssessessessesessesaessesssssssesaens 450
£ 1134 7 468

ix

TABLE OF CONTENTS

Chapter 11: Working with Filescccicunseemmmmsssssmnmmssssssnmsssssssssssssssssssssssssssssssssnnss 471
File HANAIBTS ... e 47
Path HANIEES......c.eeeeeeeeeeeecrr e 478
REAMING FIlBS ...ceceeeeereeericcrer e 482

Using Scanner 10 Read FileS.........coucvrererenernscsresesese s seanes 482
Using Files Utility Methods t0 Read Filesccoverererernsnnesesese s 484
Using Readers 10 Read Files.........c.ccovveeerenernnnresere s s 485
Using InputStream t0 Read Filesc.ccccoverrrnrrnenerese s 489
WIING FIlBS ..evveeeiecerese s n s ne e nnnne s 492
Writing Files Using Files Utility MEthodsccoveimrinrnnennesenese s sessesesnenens 492
Using Writers 10 WHe FleScccvveernrerereserssesesesess s sesse s sessssesnssensnnes 495
Using OutputStream to Write Filesccocvrvrrrrrnienrese s 499
Serialization and Deserialization...........c.ccvvernrennesnns s 502
Binary Serializationccovcevvenninnnns s 503
XML Serialization........ccoveeeerenerenesnsesssesessse s srsss s s s e sssssssssssssssssssssesesssssssenens 507
JSON Seri@lization..........ccoveernrernesennse s e 511
THE MEIA AP ... bbb 513
UsSing JavaFX IMage ClASSESccvrerrererrersersersssersessessessssessessessssessessesssssssessesssssssessessesssssssessens 526
£ 11134 7 529

Chapter 12: The Publish/Subscribe Framework...........ccccunnmmmmmmnmmmmsnssssssssssssnnns 531
Reactive Programming and the Reactive Manifesto..........ccorvrrnrennnenesinsnnsesssssses e 532
Using the JDK Reactive Streams APlcccoccerirmrnsennesnnese s ssssessssssessssesessesenns 536
Reactive Streams Technology Compatibility Kit..........cccovrrrriennrnininnsrsene e sesenaens 548
R 10 0 (0] (< A 21T T (0 SR 552
£ 1134 7R 558

Chapter 13: Garbage Collection..........ccccvssmrmssnmmsssnsmsssnsesssnssssssssssssssssssnssssnnsssas 559
Garbage ColleCtion BASICSccocoerrreererererereriresese s se s s 560

Oracle Hotspot JUM ArchiteCture.........coevvcnvriennninsnse s se e s 560
How Many Garbage Collectors Are THEIE?ccvvirrrerinnnsinse s ses e snes 564

TABLE OF CONTENTS

Working with GC from the COUE.........ccccvrererririerieresrs s sse s sesse e ssesssessessesassessessenes 571
Using the finalize() Method..........cccevririinirir e 571

Heap Memory STatiSHCSucvevierierriere st r e s saesae e saennes 578
[T 108 1= T T 584
Preventing GC from Deleting an ODJECtccvcvivvrrini e 587
USING WEaAK REFEIBINCEScvvveruerrrrerererresessesessessesessessesaessssessessesasssssessesaessssessessesssssssesnees 591
Garbage Collection EXCEptions @and CAUSESccvrerrererrersereresserseressesessessessessssessessessessssessenses 595
BT 1] 111 SRS 596
11T = 599

xi

About the Author

Tuliana Cosmina is currently a software engineer for NCR
Edinburgh. She has been writing Java code since 2002. She
has contributed to various types of applications, such as
experimental search engines, ERPs, track and trace, and
banking. During her career, she has been a teacher, a team
leader, software architect, a DevOps professional, and a
software manager.
She is a Spring-certified professional, as defined by Pivotal,

the makers of Spring Framework, Boot, and other tools.
She considers Spring the best Java framework to work with.

When she is not programming, she spends her time reading, blogging, learning to
play piano, travelling, hiking, or biking.

e You can find some of her personal work on her GitHub account at
https://github.com/iuliana.

e You can find her complete CV on her LinkedIn account at
www.linkedin.com/in/iulianacosmina.

e You can contact her at Iuliana.Cosmina@gmail.com.

xiii

https://github.com/iuliana
http://www.linkedin.com/in/iulianacosmina
http://www.Iuliana.Cosmina@gmail.com

About the Technical Reviewer

Wallace Jackson has been writing for leading multimedia publications about his

work in new media content development since the advent of Multimedia Producer
Magazine nearly two decades ago. He has authored a half-dozen Android book titles

for Apress, including four titles in the popular Pro Android series. Wallace received his
undergraduate degree in business economics from the University of California at Los
Angeles and a graduate degree in MIS design and implementation from the University of
Southern California. He is currently the CEO of Mind Tafty Design, a new media content
production and digital campaign design and development agency.

Acknowledgments

Here I am again, the main author of a technical book for the third time.

This book was quite challenging to write, because I had to quickly adapt to changes
made to the Java ecosystem. With the new six months interval release system, modules
being introduced, and backward compatibility thrown out the window, I found myself
with a project that stopped compiling and had to invest precious time into fixing it,
understand why it broke in the first place, and eventually adapt the book.

Writing books for beginners is tricky, because as an experienced developer, it might
be difficult to find the right examples and explain them in such a way that even a non-
technical person would easily understand them. That is why I am profoundly grateful to
Matthew Moodie and Mark Powers for all the support and advice they provided to keep
this book at beginner level. We have been working together for four years and it has been
a fruitful collaboration so far.

I would like to thank Wallace Jackson; his recommendations and corrections were
crucial for the final form of the book.

Apress has published many of the books that I have read and used to improve myself
professionally. It is a great honor to publish my fourth book with Apress, and it gives me
enormous satisfaction to be able to contribute to the “making” of a new generation of
Java developers.

I am grateful to all my friends who had the patience to listen to me complain about
sleepless nights and writer’s block. Thank you all for being supportive and making sure I
still had some fun while writing this book. You have no idea how dear you are to me.

I am thankful to John Mayer still, as his music provided yet again, a great
environment for my working nights.

A special thank you to Achim Wagner, whom I consider both a mentor and a dear
friend. He provided me with an environment and support to grow as a professional and
as a person, and I will miss working with him.

xvii

ACKNOWLEDGMENTS

A special thank you to the Bogza-Vlad family: Monica, Tinel, Cristina, and Stefan.
You are all close to my heart and this book might have been released later without your
support when I moved to Edinburgh.

And a very special thank-you in advance to all the passionate Java developers who
will find mistakes in the book and be so kind to write me about them so I can provide an
erratum and make this book even better.

xviii

Introduction

Even though I have been writing Java Applications since 2002 I don’t think I've ever dived
so deeply into the JVM as I did while writing this book. Most companies I've worked

for had their own code base when I joined them, and my work was mostly related to
designing, improving or maintaining one that already existed. It’s like making brownies
when you already have brownie mix. Writing this book has given me the opportunity to
get down to basics and work with basic ingredients—so, making brownies using eggs,
flower, cocoa, milk, and butter.

Java began in 1982 and was created by a handful of people. The most renowned
name linked to the beginning of Java is James Gosling, also known as the father of
Java, the language that is now used on over three billion devices. When Oracle bought
Sun Microsystems, developers were worried about Java's future, especially since its
main creator quit the company and went on to create what was thought to be Java’s
replacement: Scala. That will probably never happen. Java is still here.

Most banking applications are written in Java and because it is definitely dangerous
and costly to migrate these applications, Java will be here in 50 years, if not more. Java
began by making websites more dynamic and more entertaining, and ended up being
the basis for applications run on ATMs, cashier machines, computers, and mobile
devices. Sure, this would have been more difficult if Java wasn’t cross-platform.

The first Java version was officially released in 1996. Since then, ten more versions
have been released, with the latest one, Java 11, being released on 25th September 2018.
The work on Java 12 has already begun and the early access build is already available.

This book was written with the intention to cover the fundamental elements of the
language and of the JVM, especially the ones introduced in versions 9, 10, and 11.

The book provides a complete overview of the most important Java classes in the JVM,
all wrapped up in a multimodule project that compiles with Java 11 and Gradle 5.

Xix

INTRODUCTION

A group of reviewers has gone over the book, but if you notice any inconsistencies,
please send an email to editorial@apress.com, or directly to the author, and corrections
will be made and published in an erratum that will be uploaded to the official GitHub
repository for the book. The example source code for this book can be found on GitHub
or downloaded from the official book’s product page, located at www.apress.com/in/

book/9781484237779.
I truly hope you will enjoy using this book to learn Java as much as I enjoyed writing it.

http://www.apress.com/in/book/9781484237779
http://www.apress.com/in/book/9781484237779

CHAPTER 1

An Introduction to Java
and Its History

Java is currently one of the most influential programming languages. It all started in
1990, when an American company that was leading the revolution in the computer
industry decided to gather its best engineers together to design and develop a product
that would allow them to become an important player in the new emerging Internet
world. Among those engineers was James Arthur Gosling, a Canadian computer scientist
who is recognized as the “father” of the Java programming language. It would take five
years of design, programming, and one rename (from Oak to Java because of trademark
issues), but finally in 1996, Java 1.0 was released for Linux, Solaris, Mac, and Windows.

You might have the tendency to skip this chapter altogether. But I think it would be
a mistake. I was never much interested in the history of Java. I was using it for work. I
knew that James Gosling was the creator and that Oracle bought Sun, and that was pretty
much it. I never cared much about how the language evolved, where the inspiration
came from, or how one version was different from another. I started learning Java at
version 1.5, and I took a lot of things in the language for granted. So, when I was assigned
to a project running on Java 1.4, I was quite confused, because I did not know why
some of the code I wrote was not compiling. Although the IT industry is moving very
fast, there will always be that one client that has a legacy application. And knowing the
peculiarities of each Java version is an advantage, because you know the issues when
performing a migration.

When I started doing research for this book, I was mesmerized. The history of Java is
interesting because it is a tale of incredible growth, success of a technology, and how a
clash of egos in management almost killed the company that created it. Because even if
Java is the most used technology in software development, it is simply paradoxical that
the company that gave birth to it no longer exists.

© Iuliana Cosmina 2018
1. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_1

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

This chapter covers each version of Java to track the evolution of the language and
the Java virtual machine. You can find a timeline for versions 1.0 to 1.8 on the Oracle
official site at http://oracle.com/edgesuite.net/timeline/java./. But first, I'll
introduce the book.

Who This Book Is For

Most Java books for beginners start with the typical Hello World! example depicted here:

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

This code, when executed, prints Hello World!in the console. But if you have bought
this book, it is assumed that you want to develop real applications in Java, and get a real
chance when applying for a position as a Java developer. If this is what you want, if this
is who you are, a beginner with the wits and the desire to make full use of this language’s
power, then this book is for you. And that is why to start this book, a complex example is
used. We go over it in almost every section, when some part of it is clarified.

Java is a language with a syntax that is readable and based on the English language.
So, if you have a logical thinking and a little knowledge of the English language, it should
be obvious to you what the following code does without even executing it.

package com.apress.ch.one.hw;
import java.util.list;
public class Exampleo1l {

public static void main(String[] args) {

List<String> items = List.of("1", "a", "2", "a", "3", "a");

items.forEach(item -> {
if (item.equals("a")) {
System.out.println("A");
} else {

http://oracle.com/edgesuite.net/timeline/java./

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

System.out.println("Not A");

};

In this code example, a list of text values is declared; then the list is traversed, and when

atextis equal to "a", the letter "A" is printed in the console; otherwise, "Not A" is printed.
If you are an absolute beginner to programming, this book is for you, especially
because the sources attached to this book make use of algorithms and design patterns
commonly used in programming. So, if your plan is to get into programming and learn
a high-level programming language, read the book, run the examples, write your own
code, and you should have a good head start.
If you already know Java, you can use this book too because it covers the specifics of

Java versions 9, 10, and 11 (the EAP! release).

How This Book Is Structured

The chapter you are reading is an introductory one that covers a little bit of Java history,
showing you how the language has evolved and a glimpse into its future. Also, the mechanics
of executing a Java application are covered, so that you are prepared for Chapter 2. The
next chapter shows you how to set up a development environment and introduces you
to a simple application. In Chapters 3 to 7, the fundamental parts of the language are
covered: packages, modules, classes, objects, operators, data types, statements, streams,
lambda expressions, and so forth. Starting with Chapter 8 more advanced features are
covered such as: interactions with external data sources: reading writing files, serializing/
deserializing objects, testing and creating an interface. Chapter 12 is dedicated fully to the
publish-subscribe framework introduced in Java 9. Chapter 13 covers the garbage collector.
The book is completed by the java-for-absolute-beginners project. This project is
organized in modules (thus it is a multimodule project) that are linked to each other and
must be managed by Gradle. Gradle is something we developers call a build tool, which
is used to build projects. To build a project means transforming the code into something
that can be executed. I chose to use multimodule projects for the books I write because
it is easier to build them, and common elements can be grouped together, keeping the

'Early Access Program

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

configuration of the project simple and non-repetitive. Also, by having all the sources
organized in one multimodule project, you get the feedback on whether the sources are
working or not as soon as possible, and you can contact the author and ask him or her to
update them.

Conventions

This book uses a number of formatting conventions that should make it easier to read. To
that end, the following conventions are used within the book:

e code or concept names in paragraphs appear as follows:
import java.util.list;
e code listings appear as follows:

public static void main(String[] args) {
System.out.println("Hello there young developer!");

}

o logsin console outputs appear as follows:

01:24:07.809 [main] INFO c.a.Application - Starting Application
01:24:07.814 [main] DEBUG c.a.p.c.Application - Running in debug mode

o ! This symbol appears in front of paragraphs that you should pay
specific attention to.

o Italic font is used for metaphors, jocular terms and technical terms that
the reader should pay special attention to because they are not explained
in the current context, but they are covered in the book. Examples:

“This was mentioned before at the end of Chapter 4 when generics were
introduced.” “The stack memory is used during execution (also referred
to as at runtime)” or “Let’s see how this is being done under the hood”.

¢ Bold font is used for chapter references and important terms.

As for my style of writing, I like to write my books in the same way I have technical
conversations with colleagues and friends: sprinkling jokes, giving production examples,
and making analogies to non-programming situations. Because programming is just
another way to model the real world.

4

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

When Java Was Owned by Sun Microsystems

The first version of Java was released in 1996. Up until that point, there was a small

team named the Green Team that worked on a prototype language named Oak, which
was introduced to the world with a working demo—an interactive handheld home
entertainment controller called the Star7. The star of the animated touch-screen user
interface was a cartoon character named Duke, created by one of the team'’s graphic
artists, Joe Palrang. Over the years, Duke has become the official Java technology mascot,
and every JavaOne conference has its own Duke mascot personality and the most simple
version is depicted in Figure 1-1.

Figure 1-1. The Duke mascot (image source: http://oracle.com)

The Green Team released it to the world via the Internet, because that was the fastest
way to create widespread adoptions. You can imagine that they jumped for joy every
time somebody downloaded it, because it meant people were interested in it. And there
are a few other advantages making software open source, like the fact that contributions
and feedback come from a bigger and diverse number of people from all over the world.
Thus, for Java, this was the best decision, as it shaped the language a lot of developers
are using today. Even after 22 years, Java is still among the top-three most used
programming languages.

https://oracle.com

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

The American company that started all of this was Sun Microsystems, founded in
1982. It guided the computer revolution by selling computers, computer parts, and
software. Among their greatest achievements is the Java programming language. In
Figure 1-2,%> you can see the company logo that was used since Java’s birth year until it
was acquired by Oracle in 2010.

Figure 1-2. The Sun Microsystems logo (image source: https://en.wikipedia.
org/wiki/Sun_Microsystems)

It is quite difficult to find information about the first version of Java, but dedicated
developers that witnessed the birth of Java—when the web was way smaller and full of
static pages—did create blogs and shared their experience with the world. It was quite
easy for Java to shine with its applets that displayed dynamic content and interacted
with the user. But because the development team thought bigger, Java became much
more than a web programming language. Because in trying to make applets run in any
browser, the team found a solution to a common problem: portability.

Nowadays, developers face a lot of headaches when developing software that
should run on any operating system. And with the mobile revolution, things have
become really tricky. In Figure 1-3, you see an abstract drawing of what is believed to
be the first Java logo.

’The story behind the logo can be read here: https://goodlogo.com/extended.info/sun-
microsystems-logo-2385. You can also read more about Sun Microsystems.

6

https://goodlogo.com/extended.info/sun-microsystems-logo-2385
https://goodlogo.com/extended.info/sun-microsystems-logo-2385
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Sun_Microsystems

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

JAVA

Figure 1-3. The first Java logo, 1996-2003 (image source: http://xahlee.info/)

Java 1.0 was released at the first JavaOne conference—with over 6000 attendees. It

started out as a language named Oak® that was really similar to C++ and was designed

for handheld devices and set-top boxes. It evolved into the first version of Java, which

provided developers some advantages that C++ did not.

security: In Java, there is no danger of reading bogus data when
accidentally going over the size of an array.

automatic memory management: A Java developer does not have

to check if there is enough memory to allocate for an object and then
deallocate it explicitly; the operations are automatically handled by the
garbage collector. This also means that pointers are not necessary.

simplicity: There are no pointers, unions, templates, structures.
Mostly anything in Java can be declared as a class. Also, confusion
when using multiple inheritance is avoided by modifying the
inheritance model and not allowing multiple class inheritance.

support for multithreaded execution: Java was designed from the
start to support development of multithreaded software.

portability: A Java motto is Write it once, run it everywhere. This is
made possible by the Java virtual machine, which is covered shortly.

*The language was named by James Gosling after the oak tree in front of his house.

http://xahlee.info/

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

All this made Java appealing for developers, and by 1997, when Java 1.1 was released,
there were already approximatively 400,000 Java developers in the world. JavaOne had
10,000 attendees that year. The path to greatness was set. Before going further in our
analysis of each Java version, let’s clarify a few things.

Why Is Java Portable?

I mentioned a few times that Java is portable and that Java programs can run on any
operating system. It is time to explain how this is possible. Let’s start with a simple
drawing, like the one in Figure 1-4.

Java
Program

Linux JVM I Mac JVM ._ I Windows JVM | I Solaris JVM

ey B B

Linux OF Mac 05 Windews 05 Oracle Selaris O

Figure 1-4. What makes Java portable

Java is what we call a high-level programming language that allows a developer
to write programs that are independent of a particular type of computer. High-level
languages are easier to read, write, and maintain. But their code must be translated by
a compiler or interpreted into machine language (unreadable by humans because is it
made up of numbers) to be executed, because that is the only language that computers
understand.

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

In Figure 1-4, notice that on top of the operating systems, a JVM is needed to execute
a Java program. JVM stands for Java virtual machine, which is an abstract computing
machine that enables a computer to run a Java program. It is a platform-independent
execution environment that converts Java code into machine language and executes it.

So, what is the difference between Java and other high-level languages? Well, other
high-level languages compile source code directly into machine code that is designed
to run on a specific microprocessor architecture or operating system, such as Windows
or UNIX. What JVM does, it that is mimics a Java processor making it possible for a Java
program to be interpreted as a sequence of actions or operating system calls on any
processor regardless of the operating system.

And because the Java compiler was mentioned, we have to get back to Java 1.1,
which was widely used, even as new versions were released. It came with an improved
Abstract Window Toolkit (AWT) graphical API (collections of components used for
building applets), inner classes, database connectivity classes (JDBC model), classes for
remote calls (RMI), a special compiler for Microsoft platforms named JIT,* support for
internationalization, and Unicode. Also, what made it so widely embraced is that shortly
after Java was released, Microsoft licensed it and started creating applications using it.
The feedback helped further development of Java, thus Java 1.1 was supported on all
browsers of the time, which is why it was so widely deployed.

I Alot of terms used in the introduction of the book might seem foreign to you
now, but as you read the book, more information is presented and these words
will start to make more sense. For now, just keep in mind, that every new Java
version, has something more than the previous version, and at that time, every
new component is a novelty.

So, what exactly happens to developer-written Java code until the actual execution?
The process is depicted in Figure 1-5.

“Just In Time

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

¢ > Example01. java
(Java source file)
Writes public class Exampledl { P
_
Is compiled 5
S —By = | Jjavac
Developer } . /
\ Generates

Example01.class
(Java bytecode file)

oo RN
[L3evas lang /Sering |
Liave/wtil /Listel yove lang/Srring)>}

jevalutil/fencty

Is executed
by

os) — L

Figure 1-5. From Java code to machine code

In Figure 1-5, you see that Java code is compiled and transformed to bytecode that is
then interpreted and executed by the Java virtual machine on the underlying operating
system. This is what Java is: a compiled and interpreted general-purpose programming
language with a large number of features that make it well suited for the web. And now
that we’ve covered how Java code is executed, let’s go back to some more history.

Sun Microsystem’s Java Versions

The first stable Java version released by Sun Microsystems could be downloaded from the
website as an archive named JDK 1.0.2. JDK is an acronym for Java Development Kit. This is
the software development environment used for developing Java applications and applets.
It includes the Java Runtime Environment (JRE), an interpreter (loader), a compiler, an
archiver, a documentation generator, and other tools needed for Java development. We will
get into this more when I cover how to install the JDK on your computer.

10

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

Starting with version 1.2, released in 1998, Java versions were given codenames.®
The Java version 1.2 codename was Playground. It was a massive release and this was
the moment when people started talking about the Java 2 Platform. Starting with this
version, the releases up to J2SE 5.0 were renamed, and J2SE replaced JDK because the
Java platform was now composed of three parts:

e J2SE (Java 2 Platform, Standard Edition), which later became JSE, a
computing platform for the development and deployment of portable
code for desktop and server environments

e J2EE (Java 2 Platform, Enterprise Edition), which later became
JEE, a set of specifications extending Java SE with specifications for
enterprise features such as distributed computing and web services

e J2ME (Java 2 Platform, Micro Edition), which later became JME, a
computing platform for development and deployment of portable
code for embedded and mobile devices

With this release, the JIT compiler became part of Sun Microsystem’s JVM (which
basically means turning code into executable code became a faster operation and the
generated executable code was optimized), the Swing graphical API was introduced as
a fancy alternative to AWT (new components to create fancy desktop applications were
introduced), and the Java collections framework (for working with sets of data) was
introduced.

J2SE 1.3 was released in 2000 with the codename Kestrel (maybe as a reference to
the newly introduced Java sound classes). This release also contained Java XML APIs.

J2SE 1.4 was released in 2002 with the codename Merlin. This is the first year that the
Java Community Process members were involved in deciding which features the release
should contain, and thus, the release was quite consistent. This is the first release of the
Java platform developed under the Java Community Process as JSR 59.° The following
features are among those worth mentioning.

e Support for IPv6 (basically applications that run over a network can
now be written to work using networking protocol IPv6).

All codenames, for intermediary releases too, are listed here: http://www.oracle.com/
technetwork/java/javase/codenames-136090.html#close

°If you want to see the contents and the list of Java Specification Requests, follow this URL:
http://www.jcp.org/en/jsr/detail?id=59

11

http://www.oracle.com/technetwork/java/javase/codenames-136090.html#close
http://www.oracle.com/technetwork/java/javase/codenames-136090.html#close
http://www.jcp.org/en/jsr/detail?id=59

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

o Non-blocking IO (IO is an acronym for input-output, which refers to
reading and writing data— a very slow operation. Making 10 non-
blocking means to optimize these operations to increase speed of the

running application.)

o Logging API (Operations that get executed need to be reported to a
file or a resource, which can be read in case of failure to determine
the cause and find a solution. This process is called logging and
apparently only in this version components to support this operation
were introduced.)

o Image processing API (Components developers can use this to
manipulate images with Java code.)

Java’s coffee cup logo made its entrance in 2003 (between releases 1.4 and 5.0) at the
JavaOne conference. You can see it in Figure 1-6.7

Ef > Java

—

Figure 1-6. Java official logo 2003-2006 (image source: http://oracle.com)

J2SE 5.0 was released in 2004 with the codename Tiger. Initially, it followed the
typical versioning, and was named 1.5, but because this was a major release with a
significant number of new features that proved a serious improvement of maturity,
stability, scalability, and security of the J2SE, the version was labeled 5.0 and presented
like that to the public, even if internally 1.5 was still used. For this version and the next
two, it was considered that 1.x = X.0. Let’s list those features because most of them are
covered in the book.

"The Java language was first named Oak. It was renamed to Java because of copyright issues.
There are a few theories that you will find regarding the new name. There is one saying that
the JAVA name is actually a collection of the initials of the names being part of the Green team:
James Gosling, Arthur Van Hoff, and Andy Bechtolsheim, and that the logo is inspired by their
love of coffee.

12

http://oracle.com/

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

Generics provide compile-time (static) type safety for collections and
eliminates the need for most type conversions (which means the type
used in a certain context is decided while the application is running,
we have a full section about this in Chapter 5).

Annotations, also known as metadata, are used to tag classes and
methods to allow metadata-aware utilities to process them (which
means a component is labeled as something another component
recognizes and does specific operations with it).

Autoboxing/unboxing are automatic conversion between primitive
types and matching object types (wrappers), also covered in Chapter 5.

Enumerations define static final ordered sets of values using the
enum keyword; covered in Chapter 5.

Varargs are the last parameter of a method is declared using a type
name followed by three dots (String. . .), which implies that any
number of arguments of that type can be provided and is placed into
an array; covered in Chapter 3.

Enhanced for each loop is used to iterate over collections and arrays
too; covered in Chapter 5.

Improved semantics for multithreaded Java programs, covered in
Chapter 7.

Static imports are covered in Chapter 5.

Improvements for RMI (not covered in the book), Swing (Chapter 10),
concurrency utilities (Chapter 7), and introduction to the Scanner
class; covered in Chapter 11.

Java 5 was the first available for Mac OS X (version 10.4) and the default version

installed on Mac OS X (version 10.5). There were a lot of updates?® released for this

version to fix issues related to security and performance. It was a pretty buggy release,

which is understandable since quite a lot of features were developed in only two years.

8Let’s call them what they actually are: hotfixes.

13

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

In 2006, Java SE 6 was released with a little delay, with the codename Mustang. Yes,
yet another rename. And yes, yet again a serious number of features were implemented
in a short period of time and a lot of updates followed. This was the last major Java
release by Sun Microsystems. Oracle acquired the company in January 2010. Let’s take a
look at the most important features in this release:

¢ Dramatic performance improvements for the core platform
(applications run faster, need less memory or CPU to execute)

o Improved web service support (optimized components that are
required for development of web applications)

e JDBC 4.0 (optimized components that are required for development
of applications using databases)

o Java Compiler API (basically, from your code you can components
that are used to compile code)

o Many GUI improvements, such as integration of SwingWorker in
the AP], table sorting and filtering, and true Swing double-buffering
(eliminating the gray-area effect); basically, improvement of
components used to create interfaces for desktop applications

In December 2008, Java FX 1.0 SDK was released. JavaFX is used to create graphical
user interfaces for any platform, and the initial version was a scripting language. Until
2008, there were two ways to create a user interface in Java:

e AWT (Abstract Window Toolkit) components, which are rendered
and controlled by a native peer component specific to the underlying
operating system; that is why AWT components are also called
heavyweight components.

e Swing components, which are called lightweight because they do
not require allocation of native resources in the operating system'’s
windowing toolkit. The Swing API is a complimentary extension
of AWT.

In the first versions, it was never really clear if JavaFX would actually have a future
and grow up to replace Swing. The management turmoil inside Sun did not help in
defining a clear path for the project either.

14

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

Oracle Takes Over

Although Sun Microsystems won a lawsuit against Microsoft, in which they agreed to pay
$20 million for not implementing the Java 1.1 standard completely, in 2008, the company
was in such poor shape that negotiations for a merger with IBM and Hewlett-Packard
began. In 2009, Oracle and Sun announced that they agreed on the price: Oracle would
acquire Sun for $9.50 a share in cash; this amounted to a $5.6 billion offer. The impact
was massive. A lot of engineers quit, including James Gosling, the father of Java, which
made a lot of developers question the future of the Java platform.

Java SE 7, codename Dolphin, was the first Java version released by Oracle in
2011. It was the result of an extensive collaboration between Oracle engineers and
members of the worldwide Java communities, like the OpenJDK Community and the
Java Community Process (JCP). It contained a lot of changes, but still, a lot fewer than
developers expected. Considering the long period between the releases, the expectations
were pretty high. Project Lambda, which was supposed to allow usage of lambda
expressions in Java (this leads to considerable syntax simplification in certain cases), and
Jigsaw (making JVM and the Java application modular; there is a section in Chapter 3
about them) were dropped. Both were released in future versions. The following are the
most notable features in Java 7.

e JVM support for dynamic languages with the new invokedynamic
bytecode (basically, Java code can use code implemented in non-Java
languages, such as C)

o Compressed 64-bit pointers (internal optimization of the JVM, so less
memory is consumed)

e Small language changes grouped under project Coin

strings in switch (covered in Chapter 7)

automatic resource management in try-statement (covered in Chapter 5)

improved type inference for generics—the diamond <> operator (covered in
Chapter 5)

binary integer literals (covered in Chapter 5)

multiple exceptions handling improvements (covered in Chapter 5)

o Concurrency improvements

15

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

e Newl/O library (new classes added to read/write data to/from files,
covered in Chapter 8)

o Timsort to sort collections and arrays of objects instead of merge
sort (Sets of data that are ordered need to be sorted using an
algorithm, basically, in this version, the algorithm was replaced with
one that has better performance. Better performance usually means
reducing of consumed resources: memory and/or CPU, or reducing
the time needed for execution.)

It must have been difficult to pick up a project and update it with almost none of the
original development team involved. That can be seen in the 161 updates that followed;
most of them needed to fix security issues and vulnerabilities.

JavaFX 2.0 was released with Java 7. This confirmed that the JavaFX project had a
future with Oracle. As a major change, JavaFX stopped being a scripting language and
became a Java API. This meant that knowledge of the Java language syntax would be
enough to start building user graphical interfaces with it. JavaFX started gaining ground
over Swing because of its hardware-accelerated graphical engine called Prism that did a
better job at rendering.

Java SE 8, codename Spider, was released in 2014, and included features that were
initially intended to be part of Java 7. But, better late than never, right? Three years in the
making, Java 8 contained the following key features.

o Language syntax changes

Language-level support for lambda expressions (functional programming
features)

Support for default methods in interfaces (covered in Chapter 4)

New date and time API (covered in Chapter 5)

New way to do parallel processing by using streams (covered in Chapter 8)

o Improved integration with JavaScript (the Nashorn project).
JavaScript is a web scripting language that is quite loved in the
development community, so providing support for it in Java probably
won Oracle a few new supporters.

o Improvements of the garbage collection process

16

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

Starting with Java 8, codenames were dropped to avoid any trademark-law hassles;
instead, a semantic versioning that easily distinguishes major, minor, and security-
update releases was adopted.® The version number matches the following pattern:

$MAJOR . $MINOR.$SECURITY

When executing java -version in a terminal (if you have Java 8 installed), you see
something similar to the following log.

$ java -version

java version "1.8.0 162"

JavaTM SE Runtime Environment build 1.8.0_162-b12

Java HotSpotTM 64-Bit Server VM build 25.162-b12, mixed mode

In this log, the version numbers have the following meaning:

e The 1 represents the major version number, incremented for a major
release that contains significant new features as specified in a new
edition of the Java SE Platform Specification.

o The 8 represents the minor version number, incremented for a minor
update release that may contain compatible bug fixes, revisions to
standard APIs and other small features.

o The 0 represents the security level that is incremented for a security-
update release that contains critical fixes, including those necessary
to improve security. $SECURITY is not reset to zero when $MINOR is
incremented, which lets the users know that this version is a more

secure one.
e 162 is the build number.
e b12represents additional build information.

This versioning style is quite common for Java applications, thus this versioning style
was adopted to align with the general industry practices.

Java SE 9 was released in September 2017. The long-awaited Jigsaw project was
finally here. The Java platform is finally modular.

Java Enhancement Proposal 223: http://openjdk.java.net/jeps/223

17

http://openjdk.java.net/jeps/223

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

I This is a big change for the Java world; it’s not a change in syntax and it’s not
some new feature. It’s a change in the design of the platform. Some experienced
developers | know, who have used Java since its first years have difficulties
adapting. It is supposed to fix some serious problems that Java has been living
with for years (covered in Chapter 3). You are lucky because, as a beginner,

you start from scratch, so you do not need to change the way you develop your
applications.

The following are the most important features, aside the introduction of Java
modules.'?

e The Java Shell tool, an interactive command-line interface for
evaluation declarations, statements, and expressions written in Java
(covered in Chapter 3)

e Quite a few security updates

o Improved try-with-resources: final variables can now be used as
resources (covered in Chapter 5)

o " "isremoved from the set of legal identifier names (covered in
Chapter 4)

e Support for private interface methods (covered in Chapter 5)

« Enhancements for the Garbage-First (G1) garbage collector; this
becomes the default garbage collector (covered in Chapter 13)

o Internally, a new more compact String representation is used

(covered in Chapter 5)

e Concurrency updates (related to parallel execution, mentioned in
Chapter 5)

o Factory methods for collections (covered in Chapter 5)

e Updates of the image processing API optimization of components
used to write code that processes images

19A detailed description of all JDK 9 features can be found here: https://docs.oracle.com/
javase/9/whatsnew/toc.htm#ISNEW-GUID-983469B6-9BB5-48CA-B71D-8D7012B2F3CA

18

https://docs.oracle.com/javase/9/whatsnew/toc.htm#JSNEW-GUID-983469B6-9BB5-48CA-B71D-8D7012B2F3CA
https://docs.oracle.com/javase/9/whatsnew/toc.htm#JSNEW-GUID-983469B6-9BB5-48CA-B71D-8D7012B2F3CA

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

Java 9 followed the same versioning scheme as Java 8, with a small change. The Java
version number contained in the name of the JDK finally became the $MAJOR number in
the version scheme. So, if you have Java 9 installed, when executing java -versionina
terminal, you see something similar to the following log.

$ java -version

java version "9.0.4"

JavaTM SE Runtime Environment build 9.0.4+11

Java HotSpotTM 64-Bit Server VM build 9.0.4+11, mixed mode

Java SE 10 (AKA Java 18.3) was released on March 20, 2018. Oracle changed the Java
release style, so a new version is released every six months. Also, Java 10 uses the new
versioning convention set up by Oracle: the version numbers follow a $YEAR. $MONTH
format.!' Apparently, this release versioning style is supposed to make it easier for
developers or end users to figure out the age of a release so that they can judge whether
to upgrade it to a newer release with the latest security fixes and additional features.

The following are a few features of Java 10."?

e Alocal-variable type inference to enhance the language to extend
type inference to local variables (this is the most expected feature and
is covered in Chapter 5)

« More optimizations for garbage collection (covered in Chapter 13)

o Application Class-Data Sharing to reduce the footprint by sharing
common class metadata across processes (this is an advanced feature
that won’t be covered in the book)

e More concurrency updates (related to parallel execution, mentioned
in Chapter 5)

o Heap allocation on alternative memory devices (The memory
needed by JVM to run a Java program—called heap memory—can be
allocated on an alternative memory device, so the heap can also be
split between volatile and non-volatile RAM. More about memory
used by Java applications can be read in Chapter 5.)

"Java Enhancement Proposal 322: http://openjdk.java.net/jeps/322

2The complete list can be found at http://openjdk.java.net/projects/jdk/10/ and the
release notes containing the detailed list with API and internal changes can be found at http://
www.oracle.com/technetwork/java/javase/10-relnote-issues-4108729.html10-relnote-
issues-4108729.html
19

http://openjdk.java.net/jeps/322
http://openjdk.java.net/projects/jdk/10/
http://www.oracle.com/technetwork/java/javase/10-relnote-issues-4108729.html
http://www.oracle.com/technetwork/java/javase/10-relnote-issues-4108729.html

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

And since we've done this before, let’s see what running java -version in a terminal
shows for this Java version.

$ java -version

java version "10" 2018-03-20

JavaTM SE Runtime Environment 18.3 build 10+46

Java HotSpotTM 64-Bit Server VM 18.3 build 10+46, mixed mode

Java SE 11 (AKA Java 18.9)" (released on 25 September 2018) contains the following
features:

e Removal of JEE advanced components used to build enterprise Java
applications and Corba (really old technology for remote invocation,
allowing your application to communicate with applications installed
on a different computer) modules

o Local-variable syntax for lambda parameters allow the var keyword
to be used when declaring the formal parameters of implicitly typed
lambda expressions

o Epsilon, alow-overhead garbage collector (is a no-GC, so
basically you can run an application without a GC), basically more
optimizations to the garbage collection (covered in Chapter 13)

e More concurrency updates (related to parallel execution, mentioned
in Chapter 5)

Aside from these changes, it was also speculated that a new versioning change
should be introduced because the $YEAR. $MONTH format did not go so well with
developers. (Why so many versioning naming changes, right? Is this really so important?
Apparently, it is.) The proposed versioning change is similar to the one introduced in
Java 9, and if you are curious, you can read a detailed specification for it at
http://openjdk.java.net/jeps/322.

When this chapter was written, JDK 11 was available only via the early access
program, which is why the "ea" string is present in the version name; it means early
access. It is quite difficult to use it, as it is not supported by any editors or other build
tools yet. By the time this book is released, Java 11 will be stable and ready to use and the
sources for the book are updated accordingly on the GitHub repository.

BDetails are at http://openjdk.java.net/projects/jdk/11/

20

http://openjdk.java.net/jeps/322
http://openjdk.java.net/projects/jdk/11/

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

$ java -version

java version "11-ea" 2018-09-18

JavaTM SE Runtime Environment 18.9 build 11-ea+2

Java HotSpotTM 64-Bit Server VM 18.9 build 11-ea+2, mixed mode

And this is where the details end. If you want more information on the first 20 years
of Java’s life, you can find it on Oracle’s website.!*

What the Future Holds

Java has dominated the industry for more than 20 years. It wasn’t always at the top of the
most-used development technologies, but it never left the top five since its existence.
Even with server-side JavaScript smart frameworks, like Node.js, the heavy-lifting is still
left to Java. Emerging programming languages like Scala and Kotlin run on the JVM, so
maybe the Java programming language will suffer a serious metamorphosis in order to
compete, but it will still be here.

The modularization possibility introduced in version 9 opens the gates for Java applications
to be installed on smaller devices, because to run a Java application, we no longer need
the whole runtime—only its core plus the modules the application was built with.

Also, there are a lot of applications written in Java, especially in the financial domain,
so Java will still be here, because of legacy reasons and because migrating these titan
applications to another technology is an impossible mission.

Java will probably survive and be on top for the next 10 to 15 years. It does help that itis
avery mature technology with a huge community built around it. And the fact that is easy to
learn and developer-friendly makes it remain the first choice for most companies. So, you
might conclude at this point that learning Java and buying this book is a good investment.

Prerequisites

Before ending this chapter, it is only fair to tell you that to learn Java, you need to know or
have a few things....

e Your way around an operating system, such as Windows,
Linux or macOS

"The first 20 years of Java’s life: http://oracle.com.edgesuite.net/timeline/java/

21

http://oracle.com.edgesuite.net/timeline/java/

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

e How to refine your search criteria, because information related to
your operating systems is not covered in the book; if you have issues,
you must fix them yourself

¢ An Internet connection

If you already know Java, and you just bought this book out of curiosity or for the
modules chapter, knowing about a build tool like Maven or Gradle is helpful, because
the source code is organized in a multimodule project that can be fully built with one
simple command. I've chosen to use a build tool because in this day and age, learning
Java without one makes no sense; any company you apply to most definitely uses one.

Aside from the prerequisites that I listed, nothing else is needed. You do not need to
know math, algorithms, or design patterns. Actually, you might end up knowing a few
after you read this book.

This being said, let’s dig in.

22

CHAPTER 2

Preparing Your
Development Environment

To start learning Java, you need a few things installed on your computer. The following
are the requirements:

e Java support on your computer (kinda’ mandatory).

e Anintegrated development environment, also known as IDE, which
is basically an application in which you write your code and that you
use to compile and execute it.

o Therecommended IDE for this book is Intelli] IDEA. You can
go to their website to get the free community edition; for the
purposes of the book, it will do.

¢ Or, you can choose the most popular free IDE for Java
development: Eclipse.

e Or, you can try NetBeans,' which is the default choice for most
beginners because it was bundled with the JDK until version 8.%*

'Get it from here https://netbeans.org/

*See: http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-
jsp-142931.html

For Eclipse and NetbeansNetBeans, you will need to install a plugin for Gradle support.

23

© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_2

https://netbeans.org/
http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-142931.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-142931.html

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

e Gradle is a build tool used to organize projects, to easily handle
dependencies, and make your work easier as your projects get bigger.
(It is mandatory because the projects in this book are organized and
built on a Gradle setup.)

o Gitis aversioning system that you can use to get the sources for the
book, and you can experiment with it and create your own version.
It is optional because GitHub, which is where the sources for this
chapter are hosted, supports direct download.*

To write and execute Java programs/applications, you only need the Java
Development Kit installed. All other tools that I've listed here are only needed to make
your job easier and to familiarize you with a real development job.

I You probably need administrative rights if you install these applications for all
users. For Windows 10, you might even need a special application to give your user
administrative rights so you can install the necessary tools. This book provides
instructions on how to install everything—assuming your user has the necessary
rights. If you need more information, the Internet is there to help.

If it seems like a lot, do not get discouraged; this chapter contains instructions on
how to install and verify that each of tool is working accordingly. Let’s start by making
sure your computer supports Java.

Installing Java

Here you are with your computer and you can’t wait to start writing Java applications.
But first, you need to get yourself a JDK and install it. For this, you need an Internet
connection to open https://developer.oracle.com/java.

*Also, I don’t think there is a company that does not use a versioning system these days, so getting
comfortable with Git could be a serious advantage when applying for a software developer
position.

24

https://developer.oracle.com/java

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

Scroll down until you see the Downloads section. Click the Java SE link. The two
links and their contents are depicted in Figure 2-1.

0 @ hitpsidemeiope: onade.comfava - @ P +

Downloads

Free software downloads for developers,

« 4 4 .
= Java =’Java =’ Java
JavaEE » Java SE » Java Mission Control 3

SEE ALL DOWNLOADS »

() www.oracle com/technetwork/javafi downloads/i jep-138363 html =]

ORACLE Q

Cracle Technology Network | lava | Java SE [Downloads

dava 58 Overviaw | D D € Training |

Java EE o

Java ME Java SE Downloads

Java S Advancad & Suite

Javas Embacded

o8 <javar NetBeans
== "

Wty Tir g

Java Card

Java TV ————

T Java Platferm (JOK) 10 NetBeans with JOK 8

Comamunity Java Standard Edition

Jdava Magazine Java SE 10

Java SE 10 is the latest feature release for the Java SE Platform
Learn mane &

= Instalfation Instructions. JOK

= Orache License

& SEL Information User M; Server e
= Java SE Licensing Information User Manual
= Includes Third Pasty Licansas
= Cenified System Configurations
JRE

Figure 2-1. Navigating the Oracle site to find the desired product, JDK in this case

25

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

On the Oracle site, you find the latest stable Java version. Click the Download JDK
button. You should be redirected to the page depicted in Figure 2-2.

@ www.oracle.com/ftechnetwork/javafjavase/downloads/jdk10-downloads-4416644.htmi|

ORACLE E Menu Q ‘.. Account v @Cm

Oracle Technology Network / Java / Java SE / Downloads

Java SE Overview | Downloads || Documentation | Community | Technologies | Training

Java EE ' ' '

eV ME Java SE Development Kit 10 Downloads

Java SE Advanced & Suite Thank you for downloading this release of the Java™ Platform, Standard Edition Development Kit

Java Embedded (JDK™). The JDK is a development environment for building applications, and components using the
Java programming language.

Java DB

Web Tier The JDK includes tools useful for developing and testing programs written in the Java programming
language and running on the Java platform.

Java Card

o See also:

ava . Java Developer Newsletter: From your Oracle account, select Subscriptions, expand

New to Java Technology, and subscribe to Java.

Community « Java Developer Day hands-on workshops (free) and other events

Java Magazine « Java Magazine

JOK 10 checksum

Java SE Development Kit 10
You must accept the Oracle Binary Code License Agreement for Java SE to download this
software.
Thank you for accepting the Oracle Binary Code License Agreement for Java SE; you may
now download this software.

Product / File Description File Size Download
Linux 305.93 MB #jdk-10_linux-x64_bin.rpm
Linux 338.37 MB #jdk-10_linux-x64_bin.tar.gz
macOSs 39542 MB #jdk-10_osx-x64_bin.dmg
Solaris SPARC 206.77 MB ®dk-10_solaris-sparcvd_bin.tar.gz
Windows 390.08 MB #®jdk-10_windows-x64_bin.exe

Figure 2-2. The Oracle page where you can download the desired JDK

As you can see, JDK is available for a few operating systems. You should download
the one matching yours. For writing this book and the source code, I used a macOS
computer, which means I download the JDK with the .dmg extension.

You need to accept the license agreement before being allowed to download the
desired JDK. You can read it if you are curious, but basically, it tells you that you are
allowed to use Java as long as you do not modity its original components. It also tells you
that you are responsible for how you use it, so if you use it to write or execute dangerous
applications, you are legally responsible.

26

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

If you want to get your hands on an early version of JDK that is not officially released
yet, go to http://openjdk.java.net/projects/jdk/. Under Releases, versions 10 and
11, an early access (unstable) JDK 11 is available for download.

I This book covers Java specifics until Java 11, but that version was eight
months away when this chapter was written, so some images and details might
seem deprecated. Keep in mind that there are common details that remain the
same from one version to the next, and those won’t be reviewed and changed, as
the only thing that is different is the version number. Since this book was planned
to be released after Java 11 was released, it is recommended to download that
version of the JDK to have full compatibility of the sources.

After you download the JDK, the next step is to install it. Just double-click it and
click Next until finished. This works for Windows and macOS. The JDK is installed in a
specific location.

In Windows, it is C: \ProgramFiles\Java\jdk-10.

In macOS, itis /Library/Java/JavaVirtualMachines/jdk-10. jdk/Contents/Home.

On Linux systems, depending on the distribution, the JDK install location varies. My
preferred way is to get the *.tar.gz from the Oracle site that contains the full content
of the JDK, unpack it, and copy it to a specific location. Also, my preferred location on
Linux is /home/iuliana.cosmina/tools/jdk-10.jdk.

I Using a PPA (repository)® installer on Linux puts the JDK files where they are
supposed to go on Linux automatically and updates them automatically when a
new version is released using the Linux (Global) updater utility. But if you are using
Linux proficiently, you’ve probably figured this out.

If you go to that location, you can inspect the contents of the JDK. In Figure 2-3, the
contents of JDK 10 are on the left; the contents of the JDK 8 are on the right.

°Also known as a Package Manager

27

http://openjdk.java.net/projects/jdk/

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

a
storage /Library/Java/JavaVirtualMachines/jdk-10.jdk/Contents /Hot » storage [Library/lava/JavaVirualMachines/jdk1.8.0_162.jdk/Contents/Home/

E.. NAME ~ SIZE DATE PER...| [E.. NAME ~ SIZE DATE PER...
[+ I <DIR> 02/01/18 01:28 PM e 12/20/17 03:55 AM

bin <DIR> 02/01/18 01:31 PM dr-x bin <DIR> 12/20/17 03:58 AM dr-x

conf <DIR> 02/01/18 01:28 PM dr-x db <DiR> 12/20/17 03:53 AM dr-x

include <DIR> 02/01/18 01:28 PM dr-x include <DIR> 12/20/17 03:53 AM dr-x

jmods <DIR> 02/01/18 01:28 PM dr-x Jre <DIR> 12/20/17 03:55 AM dr-x

legal <DIR> 02/01/18 01:28 PM dr-x it <DiR> 12/20/17 03:55 AM dr-x

lib <DIR> 02/01/18 01:28 PM dr-x man <DIR> 12720717 03:53 AM dr-x

README.html| 1LKB 02/01/18 01:28 PM -r-- COPYRIGHT 3.1KE 12/20/17 03:53 AM -r--

release 1.5KB 02/01/18 01:28 PM -r--) javafx-sre.zip 4.9 MB 12/20/17 12:40 AM -r--

LICENSE 1KE 12/20/17 03:53 AM -r--

& README.hml 1KE 12/20/17 03:53 AM -r--

release 1KE 12/20/17 03:53 AM -r--

& osrozip 20 ME 12/20/17 03:53 AM -r--

o THIRDPARTYLICENSEREADME-JAVAFX. txt 62 KB 12/20/17 12:40 AM -r--

-~ THIRDPARTYLICENSEREADME.txt 141 KB 12/20/17 03:53 AM -r--

Figure 2-3. JDK version 8 and ten contents comparison

I chose to make this comparison because, starting with Java 9, the content of the
JDK is organized differently. Until Java 8, the JDK contained a directory called jre
that contained a Java Runtime Environment (JRE) used by the JDK. The 1ib directory
contains Java libraries and support files needed by development tools.

The bin contains a set of Java executables for running Java applications.

Starting in Java 9, the JRE was no longer isolated in its own directory. In the
Figure 2-4, you see the contents of the JDK 10 on the left, and the contents of the JRE 10

on the right.®
storage [Library/Java/lavaVirtualMachines/dk - 10 jdk /Contents,/Home / . ulara coumna [Users faliana cosmna /Downloads fjre - 10-ea /|
E. MAME ~ SIE DATE MR . KAME ~ 2L DATE PERMLIO NS
] <Dlt> 02701718 01:28 PM 2 <DiR> 02/01/1801 19 PM
bin <DR> 02/01/1801:31 PM dr-x bin <DiR> 02/01/18 01 19 PM drwwr-xr-x
conf <DR> 02/01/1801:28 MM dr-x conl <DM> 0270171801 19 PM drwwr-ur-x
nchude <Di> 02/0L/18 0128 PM dr-x legal <DiR> 02/01/18 01 19 PM drwor-ur-a
ymods <DR> 02/01/18 01:28 PM dr-x L] <DR> 02/01/18 01 19 PM drwosr-nmr-a
begal <DR> 02/01/1801:28 PM dr-x @ README il 1KB 02/01/18 01 19 PM —pecfucfes
] <DR> 02/01/1801:28 MM dr-x release 1L.2KB 02/01/1B01 19 PM —rwerer-
README hemi 1KB 02/01/1801:28 PM -r-=
refease 1LSKB 02/01/18 0128 PM -r--

Figure 2-4. JDK 10 and JRE contents compared

’JDK and JRE 10 have the same directory structure introduced in version 9.

28

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

The directory structure depicted was introduced when Java 9 was released. You can
read more about it on the official Oracle site.”

The most important thing you need to know about the JDK is that the bin directory
contains executables and command-line launchers that are defined by the modules
linked to the image, thus the JDK has a few of those extra compared to the JRE. The other
directories are the jmods directory, which contains the compiled module definitions, and
the include directory, which contains the C-language header files that support native-
code programming with the Java Native Interface (JNI) and the Java Virtual Machine
(JVM) Debug Interface.

The JAVA _HOME Environment Variable

The most important directory in the JDK is the bin directory, because that directory

has to be added to the path of your system so you can call the Java executables

from anywhere. This allows other applications to call them as well, without extra
configurations steps needed. Most IDEs used for handling® Java code are written in Java,
and they require knowing where the JDK is installed so that they can be run. This is done
by declaring an environment variable named JAVA HOME that points to the location of the
JDK directory. To make the Java executables callable from any location within a system,
you must add the bin directory to the system path. The next three sections explain how
to do this on the three most common operating systems.

"The new directory structure introduced with Java 9 is explained in detail at https://
docs.oracle.com/javase/9/install/installed-directory-structure-jdk-and-jre.
htm#JSJIG-GUID-F7178F2F-DC92-47E9-8062-CA6B2612D350

®Includes operations like writing the code, analyzing the code, compiling it, and executing it.

29

https://docs.oracle.com/javase/9/install/installed-directory-structure-jdk-and-jre.htm#JSJIG-GUID-F7178F2F-DC92-47E9-8062-CA6B2612D350
https://docs.oracle.com/javase/9/install/installed-directory-structure-jdk-and-jre.htm#JSJIG-GUID-F7178F2F-DC92-47E9-8062-CA6B2612D350
https://docs.oracle.com/javase/9/install/installed-directory-structure-jdk-and-jre.htm#JSJIG-GUID-F7178F2F-DC92-47E9-8062-CA6B2612D350

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

JAVA_HOME on Windows

To declare the JAVA_HOME environment variable on a Windows system, you need to open
the dialog window for setting up system variables. On Windows systems, click the Start
button; in the menu, there is a search box (or right-click the Start button for a context-
menu and select Search). Enter the word environment in there (the first three letters
should suffice) and the option should become available for clicking. These steps are

depicted in Figure 2-5.

B D @ Filters ~v

7 Best match
(ay

[& Edit the system environment variables
Control panel

Settings
E3 Edit environment variables for your account

Documents (2+)

env

Figure 2-5. Windows menu item to configure environment variables

30

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

After clicking that menu item, a window like the one shown in Figure 2-6 should
open.

Hardware Advanced System Protection Remote

You must be logged on as an Administrator to make most of these changes.
Performance

Visual effects. processor scheduling, memory usage, and virtual memory

User Profiles
Desktop settings related to your signin
Startup and Recovery
System startup, system failure, and debugging information
Environment Variables. ..
OK Cancel Apply

Figure 2-6. First dialog window to set environment variables on Windows

Click the Environment Variables button. Another dialog window opens, which is
split into two sections: user variables and system variables. You are interested in system
variables because that is where we declare JAVA_HOME. Just click the New... button and a
small dialog window appears with two text fields; one requires you to enter the variable
name—-JAVA HOME in this case, and one requires you to enter the path—to the JDK in
this case. The second window and the variable information pop-up dialog window are
depicted in Figure 2-7.

31

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

User variables for iuliana.grajdeanu

Variable Value

OneDrive C\Users\iuliana.grajdeanu\OneDrive

Path %USERPROFILE%\AppData\Local\Microsoft\Windows&pps;

TEMP %USERPROFILE%:\AppData\Lecal\Temp

TMP %USERPROFILEZ:\AppData\Local\Temp
Variable name: | 1AvA_HOME |
Variable value: | C\Program Files\Java\jdk-10 |

Browse Directory... Browse File... oK Cancel

System variables

Variable Value]
ComSpec CAWINDOWS\system32\cmd.exe

GRADLE_HOME Ci\tools\gradle

JAVA_HOME C:\Program Files\Java\jdk-10

M2_HOME Ci\tools\maven

NLS_LANG AMERICAN_AMERICA.WEBISO8859P15

NUMBER_OF_PROCESSORS 8

os Windows_NT

Path C:\ProgramData'\Oracle\Java\javapath;C:\db\product\12.2.0\dbhome_1\bin;C:AWIN...
PATHEXT JCOM;.EXE; BAT;.CMD;.VBS; VBE;.JS; JSE;.WSF..WSH;.MSC

PROCESSOR_ARCHITECTURE AMDS4 Y

New... Edit... Delete
oK Cancel

Figure 2-7. Declaring JAVA_HOME as a system variable on Windows

After defining the JAVA_HOME variable, you need to add the executables to the system
path. This can be done by editing the Path variable. Just select it from the System
Variables list and click the Edit... button. Starting in Windows 10, each part of the Path
variable is shown on a different line, so you can add a different line and add %JAVA _
HOME%\bin on it. This syntax is practical because it takes the location of the bin directory
from whatever location the JAVA_HOME variable contains. The dialog window is depicted
in Figure 2-8.

32

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

UseJ Edit environment variable X

.I Va .

ol C:\ProgramData\Oracle\Java\javapath New
B CAdb\product\12.2.00dbhome_1\bin
9 | s%systemRootsesystem32 Edit
TE
- %SystemRoot%
F%SystemRoot %\ System32\Wbem Browse...
9%SYSTEMROOT %\ System32\WindowsPowerShellw1.0\ |
FaJAVA_HOME%\bin Delete
9%M2_HOME%:\bin
%GRADLE_HOME%\bin
Move Up
Move Down -_
Systi Edit text...

I hTa :-i
4 |
Gl
14
M
N
\ o
0 :
Path C\ProgramData'\Qracle\Java\javapath;C:\db\ product\12.2.0\dbhome_1\bin;C:\WIN...
PATHEXT .COM;.EXE;.BAT;.CMD;.VBS;.VBE; JS; JSE; WSF;.WSH;.MSC
PROCESSOR_ARCHITECTURE AMD&4 s

1 J

New... Edit... Delete

oK Cancel

Figure 2-8. Declaring the JDK executables directory as part of the system Path
variable on Windows 10

On older Windows systems, the contents of the Path variable are depicted in
the dialog box shown in Figure 2-7, so you must add the %JAVA_HOME%\bin text in
the Variable value text field, and separate it from the existing content by using a
semicolon (;).

No matter which Windows system you have, you can check that you set everything
correctly by opening Command Prompt and executing the set command. This lists
all the system variables and their values. JAVA_HOME and Path should be there with the
desired values. For the setup proposed in this section when executing set the output is
depicted in Figure 2-9.

33

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

B Command Prompt - (m] ®

C:\Users\iuliana.grajdeanu>set
ALLUSERSPROFILE=C:\ProgramData
APPDATA=C:\Users\iuliana.grajdeanu\AppData\Roaming
CommonProgramFiles=C:\Program Files\Common Files
CommonProgramfFiles(x86)=C:\Program Files (x86)\Common Files
CommonProgramW6432=C:\Program Files\Common Files
COMPUTERNAME=ROSBZ48443248
ComSpec=C: \WINDOWS\system32\cmd.exe
GRADLE_HOME=C:\tools\gradle
HOMEDRIVE=C:
ATH=\Users\iuliana.grajdeanu
AVA_HOME=C:\Program Files\Java\jdk-190
LOCALAPPDATA=C:\Users\iuliana.grajdeanu\AppData\local
LOGONSERVER=\\ROSBZSRVDC11
M2_HOME=C:\tools\maven
NLS_LANG=AMERICAN_AMERICA.WEBISO8859P15
NUMBER_OF_PROCESSORS=8
OneDrive=C:\Users\iuliana.grajdeanu\OneDrive
T o |
ath=C:\ProgramData\Oracle\Java\javapath;C:\db\product\12.2.0\dbhome_1\bin;C: \WINDOWS\system32;C: \WINDOWS;C: \WI
S\System32\Wbem;C: \WINDOWS\System32\WindowsPowershell\vl.e\;C:\Program Fi Java\jdk-1e\bin;C:\tools\maven\
in;C:\tools\gradle\bin;C:\Users\iuliana.grajdeanu\AppData\lLocal\Microsoft\WindowsApps;
ATHEXT=.COM; ,EXE; .BAT; .CMD; .VBS; .VBE; . J5; . JSE; .WSF; .W5H; .MS5C
PROCESSOR_ARCHITECTURE=AMDG4
PROCESSOR_IDENTIFIER=Intel64 Family 6 Model 94 Stepping 3, Genuinelntel
PROCESSOR_LEVEL=6
PROCESSOR_REVISION=5e@3
ProgramData=C:\ProgramData
ProgramFiles=C:\Program Files
ProgramFiles(x86)=C:\Program Files (x86)
ProgramW6432=C:\Program Files
PROMPT=§P3G
PSModulePath=C:\Program Files\WindowsPowerShell\Modules;C:\WINDOWS\system32\WindowsPowerShell\vl.@\Modules
PUBLIC=C:\Users\Public
SESSIONNAME=Console
SystemDrive=C:
SystemRoot=C: \WINDOWS
TEMP=C:\Users\IULIAN~1.GRA\AppData\Local\Temp
TMP=C:\Users\IULIAN~1.GRA\AppData\Local\Temp
UATDATA=C: \WINDOWS\CCM\UATData\D9F8C395-CABB-491d-BBAC-179A1FE1BET7
USERDNSDOMAIN=NET . WORK
USERDOMAIN=WORK
USERDOMAIN_ROAMINGPROFILE=WORK
USERNAME=iuliana.grajdeanu
USERPROFILE=C:\Users\iuliana.grajdeanu
windir=C: \WINDOWS

C:\Users\iuliana.grajdeanu>

Figure 2-9. Windows system variables listed with the set command

If you execute the previous command and see the expected output and then execute
java -versionin the command prompt, it prints the expected result. You are all set.

...> Jjava -version
java version "10-ea" 2018-03-20

Java(TM) SE Runtime Environment 18.3 (build 10-ea+42)
Java HotSpot(TM) 64-Bit Server VM 18.3 (build 10-ea+42, mixed mode)

34

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

JAVA_ HOME on macO0S

The location in which JDK is installed is /Library/Java/JavaVirtualMachines/jdk-
10.jdk/Contents/Home. Your JAVA_HOME should point to this location. To do this for the
current user, you can do the following:

1. Inthe /Users/your.user directory, create a file named
.bash_profile.

2. In this file, write the following:
export JAVA HOME=$(/usr/libexec/java_home -v10)
export PATH=$JAVA HOME/bin:$PATH

On macOS§, you can simultaneously install multiple Java versions. You can set which
version is the one currently used on the system by obtaining the JDK location for the
desired version by calling the /usr/libexec/java_home command and giving the Java
version you are interested in as the argument. The result of executing the command is
stored as a value for the JAVA_HOME variable.

On my system, I have JDK 8, 9, 10, and 11 installed. If I execute the command, giving
an argument to each of the Java versions, look at what happens:

$ /usr/libexec/java_home -vi1
/Library/Java/JavaVirtualMachines/jdk-11.jdk/Contents/Home

$ /usr/libexec/java_home -v10
/Library/Java/JavaVirtualMachines/jdk-10.jdk/Contents/Home

$ /usr/libexec/java_home -v9
/Library/Java/JavaVirtualMachines/jdk-9.0.4.jdk/Contents/Home

$ /usr/libexec/java_home -v1.8
/Library/Java/JavaVirtualMachines/jdk1.8.0_162.jdk/Contents/Home

Depending of the version given as argument, a different JDK location is returned. If
you want to test the value of the JAVA_HOME, the echo command can help with that.

$ echo $JAVA HOME
/Library/Java/JavaVirtualMachines/jdk-10.jdk/Contents/Home

35

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

The line export PATH=$JAVA HOME/bin:$PATH adds the contents of the bin directory
from the JDK location to the system patch. This means that I could open a terminal and
execute any of the Java executables under it. For example, I could verify that the Java
version set as default for my user is the expected one by executing java -version.

$ java -version
java version "10-ea" 2018-03-20

Java(TM) SE Runtime Environment 18.3 (build 10-ea+42)
Java HotSpot(TM) 64-Bit Server VM 18.3 (build 10-ea+42, mixed mode)

If you do all of this and java -version prints the expected result, you are all set.

JAVA_HOME on Linux

! If you are using Linux proficiently, you probably are using a PPA, so you can
skip this section. But if you like to control where the JDK is and define your own
environment variables, keep reading.

Linux systems are Unix-like operating systems. This is similar to macOS, which is
based on Unix. Depending on your Linux distribution, installing Java can be done via the
specific package manager or by directly downloading the JDK as a *. tar.gz archive from
the official Oracle site.

If Java is installed using a package manager, the necessary executables are usually
automatically placed in the system path at installation time. That is why in this book, we
cover only the cases where you do everything manually, and choose to install Java only
for the current user in a location such as /home/your.user/tools/jdk-10.jdk, because
covering package managers is not the object of the book after all.*

9Replaces your.user with your actual system username

9Linux users do not really need this section anyway.©

36

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

So, after downloading the JDK archive from the Oracle site and unpacking it at
/home/your .user/tools/jdk-10. jdk, you need to create a file named either .bashrc or
.bash_profile' in your user home directory and add the following to it.

export JAVA HOME=/home/your.user/tools/jdk-10.jdk
export PATH=$JAVA HOME/bin:$PATH

Asyou can see, the syntax is similar to macOS. To check the location of the JDK and

the Java version, same commands mentioned in the macOS section can be used.

Installing Gradle

M adle Gradle 5.x ** The sources attached to this book can be compiled and executed
using the Gradle wrapper, which is a batch script on Windows and a shell script for other
operating systems. When you start a Gradle build via the wrapper, Gradle automatically
downloads and runs the build; thus you do not to really need to install Gradle.
Instructions on how to do this can be found by reading the public documentation at
www.gradle.org/docs/current/userguide/gradle_wrapper.html.

A good practice is to keep code and build tools separate, and for the project attached
to this book this is the recommended way to go.

If you decide to use Gradle outside the editor, you can download the binaries only
(or if you are curious, you can download the full package, which contains binaries,
sources, and documentation) from the official site (www.gradle.org), unpack them, and
copy the contents somewhere on the hard drive. Create a GRADLE_HOME environment
variable and point it to the location where you have unpacked Gradle. Also, add
%GRADLE_HOME%\bin for Windows, or $GRADLE_HOME/bin for Unix-based operating
systems, to the general path of the system.

Gradle was chosen as a build tool for the sources of this book because of the easy
setup, small configuration files, flexibility in defining execution tasks, and because it is
practical to learn a build tool—because for medium-sized and large projects, they are a
must-have.

"0On some Linux distributions, the file might already exist, you just need to edit it.

37

http://www.gradle.org/docs/current/userguide/gradle_wrapper.html
http://www.gradle.org

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

I Verify that the version of Gradle the operating system sees is the one you just
installed by opening a terminal (Command Prompt in Windows, and any type of
terminal you have installed on macOS and Linux) and entering

gradle -version

You should see something similar to this:

Build time: 2018-08-26 23:59:23 UTC

Revision: c2edb259761ee18f9a14e271f24ef58530b1300f

Kotlin DSL: 1.0-rc-3

Kotlin: 1.2.60

Groovy: 2.4.15

Ant: Apache Ant (TM) version 1.9.11 compiled on March 23 2018
JuM: 10 (Oracle Corporation 10+46)

0S: -- whatever operating system you have --

The preceding text is confirmation that Gradle commands can be executed in your
terminal; thus, Gradle was installed successfully.

Installing Git

This is an optional section, but as a developer, being familiar with a versioning system
is important, so here it is. To install Git on your system, just go to the official page at
https://git-scm.com/downloads and download the installer. Open the installer and
click Next until done. This works for Windows and macOS.*? Yes, it is this easy. You do
not need to do anything else.” For Linux, you can use your package manager or PPA to
install Git.

2For macOS, you can use homebrew as well.

BJust in case, here is a page with instructions on how to install Git for all operating systems:
https://gist.github.com/derhuerst/1b15ff4652a867391103

38

https://git-scm.com/downloads
https://gist.github.com/derhuerst/1b15ff4652a867391f03

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

To test that Git installed successfully on your system, open a terminal (Command
Prompt in Windows, and any type of terminal you have installed on macOS and Linux)
andrun git --version to see the result that it is printed. It should be the version of Git
that you just installed.

$ git -version
git version 2.15.1

Now that you have Git installed, you can get the sources for this book by cloning the
official Git repository in a terminal or directly from the IDE. But more about this a little
bit later.

Installing a Java IDE

The editor that I recommend, based on my experience of more than ten years, is IntelliJ
IDEA. It is produced by a company called JetBrains. You can download this IDE from
their official site at www. jetbrains.com. There is an Ultimate Edition available that
you can use for free for 30 days; after that, you need to acquire a license. That is why I
recommend you download and use the Community Edition,'* because for the simple
development involved in learning Java, this version suffices.

After you download the Intelli] IDEA archive, double-click it to install it. After that,
start it to do a couple of configurations. Just click the Next button until you get to the
plugin selection step, which should be very similar to the one depicted in Figure 2-10.

"The Intelli] IDEA download page is at https://www. jetbrains.com/idea/download/

39

http://www.jetbrains.com
https://www.jetbrains.com/idea/download/

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

Ul Themes -+ Keymaps = Launcher Script =+ Default plugins —+ Featured plugins

Tune IDEA to your tasks

IDEA has a lot of tools enabled by default. You can set only ones you need or leave them all.

| I wil

Build Tools Version Controls Test Tools
Ant, Maven, Gradle CVS, Git, GitHub, Mercurial, JUnit, TestNG-J, Coverage
Subversion
Customize... Disable All Customize... Disable All Customize... Disable All
£ >
T [AL
i ' oA 2
Swing Android Other Tools
Ul Designer Android Bytecode Viewer, Eclipse, Java
Stream Debugger...
Disable Disable Customize... Disable All
4
&'
—
Plugin Development
Plugin DevKit
Disable
Skip Remaining and Set Defaults Back to Launcher Script Next: Featured plugins

Figure 2-10. Intelli] IDEA Community Edition configure plugins dialog section

In the previous image, two sections were underlined. The first section configures
build tools. If you click Customize... button, the window should change to show you the
plugins that are available for build tools. Make sure that the option for Gradle is checked,
as depicted in Figure 2-11, then click the Save Changes and Go Back button.

40

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

® 0 Customize IntelliJ IDEA

Ul Themes —+ Keymaps — Launcher Script —+ Default plugins —+ Featured plugins

Tune IDEA to your tasks

IDEA has a lot of tools enabled by default. You can set only ones you need or leave them all.

Build Tools
Ant Maven Gradle
Save Changes and Go Back Enable All Disable All

Figure 2-11. Intelli] IDEA Community Edition configure Gradle plugin

The second section configures support for versioning control systems. If you click
the Customize... button, the window should show you which plugins are available
for versioning systems. Make sure that the options for Git and GitHub are checked, as
depicted in Figure 2-12, and then click the Save Changes and Go Back button. If you go
another step forward, you get to another plugin screen that offers you the possibility to
install a plugin called IDE Feature Trainer. I think if you are a beginner, a plugin might
be very useful. The window is depicted in Figure 2-13

® @ Customize IntelliJ IDEA

Ul Themes — Keymaps — Launcher Script — Default plugins —+ Featured plugins

Tune IDEA to your tasks

IDEA has a lot of tools enabled by default. You can set only ones you need or leave them all.

Version Controls

cvs Git GitHub
Mercurial Subversion
Save Changes and Go Back Enable All Disable All

Figure 2-12. Intelli] IDEA Community Edition configure Git plugin

For the final step, click the Install button, and then Start using IntelliJ IDEA, and
you are all set up and good to go. Your development environment is fully configured and
ready for you to write your first Java program.

41

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

e e Customize IntelliJ IDEA

Ul Themes — Keymaps — Launcher Script — Default plugins — Featured plugins

Download featured plugins

We have a few plugins in our repository that most users like to download. Perhaps, you need them too?

Scala IdeaVim IDE Features Trainer

Custom Languages Editor Code tools

Plugin for Scala language support Emulates Vim editor Learn basic shortcuts and essential
IDE features with quick interactive
exercises

, Recommended only if you are
= familiar with Vim.

Install Install and Enable Install

New plugins can also be downloaded in Preferences | Plugins

Skip Remaining and Set Defaults Back to Default plugins "Start using IntelliJ IDEA™

Figure 2-13. Intelli] IDEA Community Edition configure IDE Feature Trainer
plugin

But before doing that, let’s also cover how to retrieve the sources for the book.
There are three ways to get the sources for the book:
o Download the zipped package directly from GitHub.

e Clone the repository using a terminal (or Git Bash Shell in Windows)
using the following command:

git clone git@github.com:Apress/java-for-absolute-
beginners.git

e Clone the project using Intelli] IDEA. For this and cloning from
the command line, you need a GitHub user. The following images
show all the dialog windows that you see when cloning the project
with Intelli] IDEA. Figure 2-14 shows the window that you see after

42

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

you start an Intelli] IDEA instance that was never used. The project
is hosted on GitHub, so from the Check out from Version Control
menu, select GitHub. At this point, you to the next dialog window,
depicted in Figure 2-15.

@ Welcome to IntelliJ IDEA

Intellid _IHDEA

" Create New Project
¥ Import Project
Open

¥ Check out from Version Control ~

Git
Configure ~ Get Help ~

Figure 2-14. Intelli] IDEA first dialog window to clone the java-for-absolute-
beginners project

® @ Login to GitHub
Host: github.com Auth Type: Password E
Login: iuliana

Password: .o--.o.....l

Do not have an account at github.com? Sign up

? Save credentials Cancel m

Figure 2-15. Intelli] IDEA second dialog window to clone the java-for-absolute-
beginners project

43

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

This requires you to insert your GitHub username and password (Auth Type:
Password). If you do not have a GitHub username, go to https://github.com to create
one. After clicking the Login button, the window depicted in Figure 2-16 is shown.

e Clone Repository

Git Repository URL: h:tps:,-‘.fgi:hub.comMpress,-'_java-bg_n.git E Test
Parent Directory: {Users/iuliana.cosmina/apress/workspace/

Directory Name: java-bgn

? Cancel

Figure 2-16. Intelli] IDEA third dialog window to clone the java-for-absolute-
beginners project

Click the Clone button and move on to the window depicted in Figure 2-17.

Checkout From Version Control

, I J Would you like to create an IntelliJ IDEA project for
the sources you have checked out to
JUsersfiuliana. cosmina Japress/workspacefjava-bgn?

z
Figure 2-17. Intelli] IDEA fourth dialog window to clone the java-for-absolute-

beginners project

Click Yes because you definitely need an Intelli] IDEA project for the sources. In
Figure 2-18, Intelli] IDEA has identified that the project might be configured with Gradle
and recommends to Import project from External model and select Gradle. Do so and
click Next.

44

https://github.com/

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

® @ Import Project
Create project from existing sources

© Import project from external model

S Eclipse

7 | Cancel Previous m

Figure 2-18. Intelli] IDEA fifth dialog window to clone the java-for-absolute-
beginners project

The window depicted in Figure 2-19 is the last image before having a full-blown
local Gradle project. If you configured JAVA and Gradle properly, Intelli] IDEA finds
selects them automatically for you.

e @ Impart Project

Gradle project: ~/temp/java-bgn

Use auto-import
Create directories for empty content roots automatically

Group modules: € using explicit module groups using qualified names

Create separate module per scurce set
Store generated project files externally
Use default gradie wrapper (not configured for the current project)
Use gradle ‘wrapper' task configuration (D) Gradie wrapper customization in buid seriot

© Use local gradle distribution

and

Gradle home: u (il ina/Tools/gradie/current
Gradle JVM: = Use Project JOK (java version "1.8.0_162", patt aVirtual.. k1.8.0_162 JdkfContents/Home)
Preject format: .idea (directory based) ﬁ
* Global Gradie settings

£ Cancel Pravious

Figure 2-19. Intelli] IDEA last window to clone the java-for-absolute-
beginners project

45

CHAPTER 2

PREPARING YOUR DEVELOPMENT ENVIRONMENT

And this is it. Starting in the next chapter, some code snippets are presented; so go
ahead and build the project. You can do this by executing the build task from Gradle
project view. Figure 2-20 shows the Intelli] IDEA editor with the project loaded and the

Gradle view opened.

[oW] l__ﬂ java-bgn [~/apress/workspacefjava-bgn] - .../chapter0Q/src/mainfjava/com/apress/bgn/chQ/Base.java [chapter00_main]

00) B src) g main) B java) En com) Ew apress) B bgn Bacho ;) & §3 java-bgnlbuild] ~ | P K ¥Z o @ Q
g [Project * @ k| - |- © Basejova - -l -:-:55
E i java-bgn ~/apress/workspace/jz package com.apress.bgn.ch@; G o+ @ T =R b5 B =
= > Dbu.gradle — ; I
= idea cimport ... ¥ (® java-bgn
| . v (= - {root]
> - chapter00 ik fL: 1.a\raT bgkn ,‘C/
g L = chapter01 = Created by iuliana.cosming ’ ?G a_sbs.ld
g » I chapter03 . | v Fghbul b
% d .gitignore public class Base { | | 4+ assemble
4] (2 build.gradle i i
e private static Logger LOGG f v
Contributing.adoc T bl bu!IdDependan\s
i'miava-bgn.iml private int secret = @; £* buildNeeded
2 java-for-beginners_small.png € classes
5 } ol 15 public Base() { LOGGER.inf #% clean
& LICENSE.txt 18 g
README.adoc 19 Sk LF jar
(;\ senings,gradle \ ’.f'?r-!.’.‘r:d to print value © bﬁi::itectfpsses
< ity > Bgbu
lilli External Libraries 2 public void printSecret()s QP
26 & help
7 class HiddenBase{ > g other
// you cannot see me > g verification
e » I Run Configurations
: » (& :chapter00
» (& :chapter01
Base » (& :chapter03
Run (+* java-bgn [build] " L
| . - %
:chapter@3:compilelava
+ :chapter@3:processResources NO-SOURCE
-~ z¢ :chapter@3:classes
. ™% :chapter@3:jar
% :chapter@3:assemble
B3 _ :chapterd3:compileTestJava NO-SOURCE
' :chapter@3:processTestResources NO-SOURCE
x o ichapter@3:testClasses UP-TO-DATE
:chapter@3: junitPlatformTest
X :chapter3:test SKIPPED
2 :chapter@3:check UP-TO-DATE
i ichapter@3:build
5
E BUILD SUCCESSFUL in 3s
& 1@ actionable tasks: 10 executed
* 12:57:27 AM: Task execution finished 'build’'.
P 4Run WE:TODO '\ 9 VersionControl [E Terminal 17 Build () Event Log
O 914 LF: UTF-8: Gitmaster: & @&

Figure 2-20. Intelli] IDEA Gradle project view with Tasks node expanded

46

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

Summary

If any of instructions are unclear to you (or I missed something), do not hesitate to use
the World Wide Web to search for answers. All the software technologies introduced in
this chapter are backed up by documented and comprehensive official websites and by
huge communities of developers eager to help. And in the worst-case scenario, you can
always create an issue on the Apress GitHub official repository for this book, or drop me
an email. I'll do my best to support you if need be.

But I think you will be fine. Java is hardly rocket-science.’*®

5Well, it wasn’t until Java 9. But this book should make it easier for beginner developers.

47

CHAPTER 3

Getting Your Feet Wet

This is the last introductory chapter in the book. After this one, we get to the serious
business. The previous chapter left you with a complete development environment
configured for writing Java code. It is time to make use of it. The following topics are
covered in this chapter:

e Using]JShell

e Java fundamental building blocks: packages, modules, and classes
o Creating a Java project with Intelli] IDEA

e Compiling and executing Java classes

o Packing aJava application into an executable jar

e Using Gradle to automate compiling and test execution

Using JShell

Introduced in Java 9, the Java Shell tool (JShell) is an interactive tool for learning the
Java programming language and prototyping Java code. This means that you can write
Java code and execute it in the console, without the need to save it to a file, which is later
compiled into bytecode and then interpreted by the underlying OS as a sequence of
instructions to run to execute it. JShell is quite late to the party, as scripting languages
like Python and Node introduced similar utilities years ago, and JVM languages like
Scala, Clojure, and Groovy adopted it some time ago. But, better late than never is still
acceptable.

JShell is a Read-Eval-Print Loop (REPL), which evaluates declarations, statements,
and expressions as they are entered, and then it immediately shows the results. It
is practical to try new ideas and techniques quickly and without the need to have a
complete development environment or an entire context for the code to be executed in.

49

© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_3

CHAPTER 3 GETTING YOUR FEET WET

JShell is a standard component of the JDK and the executable to start it, is in the bin
directory located in the JDK installation directory. This means that all you have to do
is open a terminal (Command Prompt in Windows, and any type of terminal you have
installed on macOS and Linux) and type jshell. You should see something like this:!

$ jshell
| Welcome to JShell -- Version 10
| For an introduction type: /help intro

Go ahead and enter /help to view a list of all the available actions and commands.

jshell> /help
Type a Java language expression, statement, or declaration.
Or type one of the following commands:
/1list <name or id>|-all|-start
list the source you have typed

|

|

|

|

| /edit <name or id>
| edit a source entry

| /drop <name or id>

| delete a source entry

| /exit <integer-expression-snippet>
| exit the jshell tool

To see exactly what JShell is doing, we can start it in verbose mode by adding -v as
an argument when starting it. Let’s play with a few numbers and see what happens. First,
let’s start the JShell in a verbose mode, so we’ll have a report log of everything that JShell
does when we insert statements. In your terminal, of enter java -v.

$ jshell -v
| Welcome to JShell -- Version 10-ea
| For an introduction type: /help intro

!Since this book covers Java notions up to Java 11, you can install JDK 11 and work with it, if it has
been released by the time you get this book. While writing the book, I installed a new JDK as soon
as it was available, but tried to keep the version 10 as a constant version throughout the book, as
to avoid confusion.

50

CHAPTER 3 GETTING YOUR FEET WET

In Java, values are assigned to sequences of characters named variables. (More
about how to name them and use them in Chapter 4.) Next, let’s create a variable of type
integer (int in Java) and give it the value of 42. To do this, enter int i=42.

jshell> int i = 42
i==>42
| created variable i : int

As you can see, the log message is clear and tells us that our command was executed
successfully and the variable of type int was created. The line 1 ==> 42 lets us know that
value 42 was assigned to the variable that we just created.

Let’s declare another one named j. In the code snippet, below 35 is the value that we
assign to it. But you can try different numbers if you want to.

jshell> int j = 35
j ==> 35
| created variable j : int

As long as the JShell session is not closed, the two previous variables still exist,
because we can further use them. Let’s add them together. The + operator sums two
integer variables in Java, just like in plain mathematics. Enteri + j.

jshell> i + j
$3 ==> 77
| created scratch variable $3 : int

As you can see, we added two variables but we did not store the result in a third,
thus JShell creates a scratch variable to store the result and print it in the log; but that
variable cannot be used in later statements, because it does not have a name.

All seems fine: variables are created and operations are executed correctly. Anything
that could be written in Java can be written in the JShell and executed.

51

CHAPTER 3 GETTING YOUR FEET WET

I The building blocks of Java are named classes, which are pieces of code that
model real-world objects and events. Classes contain two types of members:
those modelling to states, which are the class variables, also named fields or
properties, and those modelling behavior, named methods. JDK provides a lot

of classes that model the base components needed to create most applications.
Classes are covered in more detail in the next chapter and you create a lot of them
while reading this book. Even if this terms and concepts seem foreign now, just be
patient, and let them add up; they will make more sense later.

In JShell, JDK classes can be used like java.lang.String (programming
components that you learn more about in Chapter 4), which is the Java class that
represents text objects. And their methods can be called. Let’s declare our first String
variable.

jshell> String text = "this is a text";
text ==> "this is a text"
| created variable text : String

We've just declared a variable of type String named text with the value of "this is
a text". The String class has many methods you can call to modify a text, let’s call one
with an obvious effect. Type text.toUpperCase().

jshell> text.toUpperCase()
$6 ==> "THIS IS A TEXT"
| created scratch variable $6 : String

The last statement is called a String method, which uppercases the variable
contents. But let’s see what happens when we introduce something that does not match
the Java syntax. Let’s call a method that does not exist for type String.

jshell> text.toAnotherUniverse()

| Error:

| cannot find symbol

| symbol: method toAnotherUniverse()
| text.toAnotherUniverse()

|

52

CHAPTER 3 GETTING YOUR FEET WET

JShell is quite clear in telling us that the toAnotherUniverse() is unknown to it. Let’s
throw plain text in there. In the following, I tried "what is this?".

jshell> what is this?
| Error:

| ';' expected
| what is this?
|

A

In the first statement, we tried calling a method that is not defined for the String
class, and the error message was pretty relevant in regards to what we did wrong.
We can even create our own methods.

jshell> String createHello(String s){

...> return "Hello " + s;
o>}
| created method createHello(String)
jshell> createHello(text)
$8 ==> "Hello this is a text"
| created scratch variable $8 : String

Code completion? is also available in JShell. Take the text variable that we defined
earlier, for example; if we enter text then puta "." (dot) after it and then press the Tab
key, the list of available methods is listed, as depicted in Figure 3-1. If you type a few
letters from the method name, filtering is applied. JShell suggests only the method
names that start with that combination of letters. Pretty helpful, right?

2Also called code assistance

53

CHAPTER 3 GETTING YOUR FEET WET

| Goodbye

~— java « jshell -v

[iuliana.grajdeanu@ROSBZM4044324X - - §$ jshell -v

| wWelecome to JShell -- Version 10-ea
| For an introduction type: /help intro

[jshell> String text="this is a text"
text ==> "this is a text"
| ecreated variable text : String

jshell> text.

charat(chars() codePointAt codePointBefore(codePointCount (
codePoints() compareTo(compareTolgnoreCase(concat (contains(
contentEquals(endsWith(equals equalsIgnoreCase| getBytes(
getChars(getClass() hashCode() indexOf(intern()
isEmpty() lastIndexOf(length() matches(notify()
notifyAll() offsetByCodePoints(regionMatches (replace(replacenll (
replaceFirst(split(startsWith(subSequence(substring(
toCharArray() toLowerCase(toString() toUpperCase(trim()
wait(

jshell> text.to

toCharArray() toLowerCase(toString() toUpperCase(

jshell> text.tof]

Figure 3-1. JShell lists methods possible to call on a String variable

If you want to see all variables you have declared in a JShell play session, you can do
so by executing the /vars command.

jshell> /vars
String text = "this is a text"

[]
[One]

|

| List<String> units
| List<String> list1
|
|

File f = .
Logger log = null

The preceding output corresponds to a sequence of statements executed in a JShell
console that looks like this:

jshell> String text = "this is a text"
text ==> "this is a text"

| created variable text : String

jshell> List<String> units = new Arraylist<>()
units ==> []

| created variable units : List<String>

jshell> List<String> listl = new Arraylist<>()
list1 ==> []

| created variable list1 : List<String>

54

CHAPTER 3 GETTING YOUR FEET WET

jshell> listi.add("One");
$4 ==> true
| created scratch variable $4 : boolean
jshell> File f = new File(".")
f==>.
| created variable f : File
jshell> import java.util.logging.LogManager;

jshell> import java.util.logging.logger;

jshell> Logger 1 = LogManager.getlLogManager().getLogger("sample");
1 ==> null
| created variable 1 : Logger

If you want to save all your input from a JShell session, you can do so by executing
the /save [filename.java] command. It results in a file containing all Java statements
that you have executed with JShell within that session.

String text="this is a text";
List<String> units = new ArraylList<>();
List<String> list1 = List.of("One");
File f = new File(".");

import java.util.logging.logger;

import java.util.logging.LogManager;
Logger log = LogManager.getlLogManager().getLogger("sample");

Also, assuming the preceding output is a list of Java statements exported by JShell
to a file called sample. java, using the command /save sample.java, all of those
statements can be executed into a new JShell session using the /open sample.java
command. So, all variables will be created and we can use them in the new session.

There is a JShell complete user guide available on the Oracle official site if you are
interested in trying every command and every feature it has to offer.

If you have opened your JShell and tried yourself some of the commands listed in
this section, you already got your feet wet with a little Java syntax. But there is a reason
that there is an entire chapter for that, but until then, it is more helpful to know the
building blocks of the Java ecosystem.

30racle JShell user guide: https://docs.oracle.com/javase/9/jshell/toc.htm
55

https://docs.oracle.com/javase/9/jshell/toc.htm

CHAPTER 3 GETTING YOUR FEET WET

Java Fundamental Building Blocks

I This is a consistent introduction into Java as a platform, but to write code
confidently, you need to have a grasp of what happens under the hood, what the
building blocks are, and how they are connected to each other. If you want, you
can skip the next section altogether, but in the same way some new drivers need
a little knowledge of how the engine works before grabbing the driving wheel,
some people might feel more confident and in control when programming if they
understand the mechanics a little. So, | wanted to make sure that anyone reading
this book gets a proper start.*

To write Java applications, a developer must be familiar with the Java building blocks
of the Java ecosystem. The core of this ecosystem is the class. There are other object
types in Java, but classes are the most important because they represent the templates
for the objects making up an application. A class groups fields and methods. When an
object is created, the values of the fields define the state of the object and the methods
describe its behavior.

I The Java object is a model of a real-world object. So, if we choose to model
a car in Java, we choose to define fields that describe the car: manufacturer,
modelName, productionYear, and speed. The methods of our car class describe
what the car does; and a car does mainly two things: accelerates and brakes.

All object types are described in files with the *. java extension. Object types are
organized in packages. A package is a logical collection of types, some of them are
visible outside the package, and some of them are not, depending on their scope.

A package is a hierarchy of directories, with the Java object types on the last level

(usually, but now always).

‘If you are worried that you will forget the keywords and meaning for modules, print the cheat
sheet at http://files.zeroturnaround.com/pdf/Rebellabs-Java-9-modules-cheat-sheet.
pdf and keep it handy.

56

http://files.zeroturnaround.com/pdf/RebelLabs-Java-9-modules-cheat-sheet.pdf
http://files.zeroturnaround.com/pdf/RebelLabs-Java-9-modules-cheat-sheet.pdf

CHAPTER 3 GETTING YOUR FEET WET

Package names must be unique and their name should follow a certain template.
Good practices say that to ensure unicity and meaning, you typically begin the name
with your organization’s Internet domain name in reverse order, then add various
grouping criteria. In this project, package names follow the template depicted here:

com.apress.bgn.ch[*]+

This template begins with the reversed domain name for Apress publisher (www.
apress.com), then a term identifying the book is added (bgn is a shortcut for beginner)
and at last the ch plus the number of the package the source (usually) matches.

Starting with Java 5, each package can contain a file named package-info. java that
contains a package declaration, package annotations, package comments, and Javadoc
tags. The comments are exported to the Javadoc for that package and you learn how
to generate that with Gradle later. The package-info.java must reside under the last
directory in the package. So, if we define a com.apress.bgn.ch3 package, the overall
structure and contents of the Java project looks like Figure 3-2.°

chapter03/

— chapter03.iml
— gro

L— com
L— apress
— bgn
'— ch3
— SimpleReader.java
L— package-info.java

Figure 3-2. Java package contents

The package-info.java contents could be similar to this:
/**
* Contains classes used for reading information from various sources.
* @since 1.0-SNAPSHOT
* @author iuliana.cosmina
* @version 1.0-SNAPSHOT
*/
@Deprecated
package com.apress.bgn.ch3;

*The chapter03.iml is an Intelli] IDEA project file.

57

http://www.apress.com
http://www.apress.com

CHAPTER 3 GETTING YOUR FEET WET

The files with *. java extension containing the object types definitions are compiled
into files with *.class that are organized according to the package structure and
packaged into one or more JARs (Java Archives).5 For the previous example, if we were to
unpack the JAR resulted after the compilation and linkage, you would see what’s shown
in Figure 3-3.

chapter03-1.0-SNAPSHOT
— META-INF

| L— MANIFEST.MF
F— com

| L— apress

| ‘— bhgn

| L— ch3
| — SimpleReader.class
| L— package-info.class

Figure 3-3. Contents of a sample JAR

! package-info. java files are not mandatory, packages can be defined
without them. They are useful mostly for documentation purposes.

The code in one package might span multiple JARs, meaning if you have more than
one subproject” in your project you can have the same package name in more than once,
containing different classes. A symbolic representation of all the preceding is depicted in
Figure 3-4.

*When JARs are hosted on a repository, such as The Maven Public Repository, they are also called
artifacts.

T am deliberately avoiding the term module for now to avoid confusion between project modules
and Java modules.

58

CHAPTER 3 GETTING YOUR FEET WET

Java Library

/ s Packaae 1 Object Type 3
; Object Type 4
e

Object Type 6

8
2
!

Figure 3-4. Java building blocks

Alibrary groups one or more JARs.?

A Java application can make use of one or more libraries, and in order to be run,
needs all of its dependencies (all the JARs) on the classpath. What does this mean? It
means that to run a Java application, the JDK is needed, the dependencies (external
JARs) and the application jars. Figure 3-5 depicts this quite clearly.

Classpath 4 - mmmm e

+ Dependencies

m ‘ Jor “ (more JARs)

Figure 3-5. Classpath of an application

The JARs that make up an application classpath are (obviously) not always
independent of each other. For 21 years this organization style was enough, but in
complex applications there were a lot of complications caused by: packages scattered in

®The most popular are logging libraries like Log4]. (https://logging.apache.org/log4j/2.x/)
and Logback (https://logback.qos.ch/)

59

https://logging.apache.org/log4j/2.x/
https://logback.qos.ch/

CHAPTER 3 GETTING YOUR FEET WET

multiple jars, transitive dependencies between jars, which sometimes leads to different
versions of the same class on the classpath, missing transitive dependencies and
accessibility problems. All these problems are grouped under one name The Jar Hell.?
This problem was resolved in Java 9 by introducing another level to group packages, but
we should expect that there is The Module Hell at some point in the future.

Before introducing modules, access modifiers should be mentioned because Java
object types and members can declared with certain access rights within packages, and
that is something important to understand before jumping into coding.

Access Modifiers

When you declare an object type in Java (let’s stick to class because it is the only one
mentioned so far), you can configure who should be able to use it. Access modifiers specify
access to classes, and in this case, we say that they are used at the top-level. They can also
specify access to class members, and in this case, they are used at member-level.*

At top-level only two access modifiers can be used: public and none.

A top-level class that is declared public must be defined in a Java file with the same
name. So, the following class is defined in a file named Base. java stored under the com.
apress.bgn.cho package.

package com.apress.bgn.cho;

//top-level access modifier
public class Base {

The contents of the class are not depicted for the moment and replaced with . . . to stop
you from losing focus. A public class is visible to all classes anywhere. So, a different class, in a
different package can create an object of this type, like in the following sample code:

%A great article about The Jar Hell in case you want to know more, but you might want to read it
later, after you have written a little code of your own. See https://tech-read.com/2009/01/13/
what-is-jar-hell/

1T will not mention nested classes right now, as they are not really crucial for understanding this

section. But in the downloadable Appendix, there is a small section about nested and local
classes that you might find useful.

60

https://tech-read.com/2009/01/13/what-is-jar-hell/
https://tech-read.com/2009/01/13/what-is-jar-hell/

CHAPTER 3 GETTING YOUR FEET WET
package com.apress.bgn.ch3;

import com.apress.bgn.ch0.Base;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;

public class Main {
public static void main(String... args) {
// creating an object of type Base
Base base = new Base();

I For now, let this affirmation sink in: a public class is visible to all classes
everywhere.

The option to not use an access modifier it is called using the default or package-
private modifier."! This means if a class has no access modifier, the class is only visible
to classes defined in the same package. A class without an access modifier can be
defined in any Java file, one that has the same name, or right next to the class that gives
the file its name. So, if we were to declare a class named HiddenBase in the Base. java file
as depicted in the following code snippet, trying to create an object of this type within
the Main class is not possible, because this class is in a different package.

package com.apress.bgn.cho;

public class Base {

}

class HiddenBase{
// you cannot see me outside the package

"I know it seems confusing that there are two names referring to the lack of access modifiers, but
as you might read other books or blog posts that refer to this situation, it is better to have all the
possibilities listed here.

61

CHAPTER 3 GETTING YOUR FEET WET

Sure, you can write the code, but the Java compiler will not compile it, and there is
no bytecode to execute. Also, smart Java editors very clearly show you the error of your
ways, by making your code red and refusing to provide any code assistance when writing
it. Figure 3-6 depicts how Intelli] IDEA tries to tell me that I'm doing something wrong in
trying to access a package-private class.

@ ® ¥ java-bgn [~/temp/java-bgn] - .../chapter03/src/mainfjava/com/apressfbgn/ch3/Main.java [chaptert
. java-bgn | ['; chapter03 ; [src) ') main } = java) 5 com apress) Lu bgn) ch3) & Main)
B Project - @ = % I ner00/..fmodule-infojav: & Mainjava 4. chapter03/.../module-infojava + settings.gradle
% : java package com.apress.bgn.ch3;
ol
= mm.aprﬁss.hgn.cho import com.apress.bgn.chd.Base;
€ Base.java 4 import com.apress.bgn.ch8.HiddenBase;
© € Base import org.slf4j.Llogger;
2 & HiddenBase import org.slf4j.LogaerFactory;
% i module-info.java FI
""'* resources 3 * Created by luliana.cosmina on 2/26/18
o logback.xm|) */
. test 11 b public class Main {

rivate static Logger LOGGER = LoggerFactory.getl r(Base.class);
i chapter00.gradie P 099! 99 y.getLogge)

.chapter03_ i b public static void main{String... args) {
build Base base = new Base();
out 16 HiddenBase hiddenBase = nmew HiddenBase();
sre } ;
main,
iava
com.apress.bgn.ch3
byeworld
helloworld
© Main
s+ module-info.java
resources
test

= chapter0O3.gradle

Figure 3-6. Intelli] IDEA hinting that access to a package-private class leads to a
compilation error

In the same figure, the file containing the two classes is depicted in a rectangle to
attract your attention on how the editor is making it obvious that the two classes are
defined in the same Java file.

I For now, take this affirmation and let it sink in: a class with no access
modifier is visible to all classes in the same package.

62

Inside a class, the class members are defined: fields and methods.'? Access

CHAPTER 3 GETTING YOUR FEET WET

modifiers can be applied to the class members as well, and at member-level, two

more modifiers can be applied: private and protected. At member-level, the access

modifiers have the following affects.

e public: The same as at top level, the member can be accessed from

everywhere.

o private: The member can only be accessed from within its own class.

o protected: The member can only be accessed from within its own

package or by any subclass' of its class in another package.

e none: The member can only be accessed from within its own package.

If it seems complicated, it’s only until you begin writing code and getting used to it.

On the official Oracle documentation page, there is a table with the visibility of members,

depicted here in this book as Table 3-1."*

Table 3-1. Member-Level Accessors

Modifier Class Package Subclass World
public Yes Yes Yes Yes
protected Yes Yes Yes No
none (also referred to as default/package-private) Yes Yes No No
private Yes No No No

You will probably come back to this table once or twice after you start writing Java

code. Everything in this table is still valid after the introduction of modules, but only

once you properly configure module access, of course. Q

?Aside from that, we can also define other Java object types, which are referred to as nested, but

we'll cross that bridge when we come to it.
BCreating a subclass is covered in Chapter 5.

I depicted the table to avoid the hassle of navigating to this URL: https://docs.oracle.com/

javase/tutorial/java/javaOO/accesscontrol.html

63

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

CHAPTER 3 GETTING YOUR FEET WET

Introducing Modules

Starting with Java 9, a new concept was introduced: modules. They are used to group and
encapsulate packages. Implementation of this new concept took more than ten years. The
discussion about modules started in 2005, and it was proposed to be implemented for Java 7.
Under the name Project Jigsaw an exploratory phase started in 2008. Java developers
hoped a modular JDK would be available with Java 8, but it was made possible in Java 9,
after three years of work (and almost seven year of analysis). Apparently, this is why the
official release date for Java 9 was postponed to September 2017.%

Modules represent a new way to aggregate packages. A module is a way to group
them and configure more granulated access to package contents.

A module is a uniquely named, reusable group of packages and resources (XML
files) described by a file named module-info. java. This file contains the following
information:

¢ the module’s name

e the module’s dependencies (that is, other modules this module
depends on)

o the packages it explicitly makes available to other modules (all other
packages in the module are implicitly unavailable to other modules)

o the services it offers

¢ the services it consumes

e towhat other modules it allows reflection
¢ native code

e resources

o configuration data

In theory, module naming resembles package naming and follows the reversed-
domain-name convention. In practice, make sure that the module name does not
contain any numbers and that it reveals clearly what its purpose is. The module-info.
java file is compiled into a module descriptor, which is a file named module-info.

15The full history of the Jigsaw project can be found at http://openjdk.java.net/projects/
jigsaw/

64

http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/

CHAPTER 3 GETTING YOUR FEET WET

class that is packed with classes into a plain old JAR file. The location of the file is in
the root sources directory, outside of any package. For the example introduced earlier, a
module-info.java was added and the new project structure is depicted in Figure 3-7.

chapter03/
L— src
F— main
| F— java
[| F— com
| | | L— apress
| | | L— bgn
o L— ch3
[| | — SimpleReader.java
[| [L— package-info.java
| | L— module-info.java
| L— resources

Figure 3-7. Structure of a Java 9 project

As any file with the *. java extension, the module-info. java gets compiled into a
*.class file. As the module declaration is not a part of Java object types declaration,
module is not a Java keyword, so it can still be used when writing code for Java object types.
For package, the situation is different, as every Java object type declaration must start with
a package declaration. Take a look at the SimpleReader class, declared as follows.

package com.apress.bgn.ch3;

public class SimpleReader {

private String source;

So, what does this actually mean? Where is the module and what is it? Well, in
simple projects that are made of one root directory with sources, modules do not have to
physically delimit or organize sources. ' They are defined by the contents of the module-
info.javafile. So, starting with Java 9, what is shown in Figure 3-4 evolves into Figure 3-8.

%Unless you rename directories containing sources for a module to the module name. Having
actual directories for modules is unavoidable when the sources in the root directory of a project
must be split into different modules.

65

CHAPTER 3 GETTING YOUR FEET WET

Java Library

JAR 1 JAR 2

Modufe 1 Module 2

Objct Typo
Ca Tie

JAR 3

Module 3

Object Type 4

Figure 3-8. Java building blocks, starting with Java 9

In Figure 3-8, there is no need to create a directory for the module in JAR1 and JAR2.
For JAR3, there are two modules archived in the same JAR; in this case, we need to explicitly
separate their sources. The reason for this is the need to have two module-info. java files, and
obviously no operating system allows two files in the same directory to have the same name. An
example of such a project is covered in the Appendix , which is available as part of the book’s
source code download (https://github.com/apress/java-for-absolute-beginners).

The introduction of modules means the JDK is now divided into modules as well. This
means that the Java platform is no longer a monolith that consists of a massive number
of packages and making it challenging to develop, maintain, and evolve. The platform is
now split into 95 modules that can be viewed by executing java --list-modules (the
number might vary in Java later versions).

$ java --list-modules
java.base@10

66

﻿https://github.com/apress/java-for-absolute-beginners﻿

CHAPTER 3 GETTING YOUR FEET WET

java.compiler@10
java.datatransfer@10
java.desktop@10

Each module name is followed by a version string, @10, which means that the
module belongs to Java 10.

So, if a Java application does not require all modules, a runtime can be created only
with the modules that it needs, which reduces the runtime’s size. The tool to build a
smaller runtime customized to an application needs is called jlink, which is part of the
JDK executables. It allows larger levels of scalability and increased performance.*”

There are multiple benefits of introducing modules, that more experienced
developers have been waiting for years to take advantage of. But configuring modules for
bigger and more complex projects is no walk in the park, so for the time being, a simple
configuration for a module containing one package is covered. After finishing this book,
you are welcome to read the Appendix, where a more advanced module configuration is
covered, with examples for each of the possible module configuration is presented.

The contents of the module-info.java can be as simple as the name of the module
and two brackets.

module chapter.three {
}

Configuring Modules

Within those brackets, different module directives may be declared, using one of the
following keywords:

e requires

o exports
e module
e open

""How to use jlink is not an object of this book. The focus of the book is learning the Java
programming language; thus, the technical details of the Java platform will be kept to a
minimum, just enough to start writing and executing code confidently.

67

CHAPTER 3 GETTING YOUR FEET WET

e opens... to
e provides ... with
e transitive

Each of them covers a specific behavior, but for a beginner, the most important two
are requires and exports.

Modules can depend on one another. For our example, classes inside the chapter.
three module need access to packages, and classes in the chapter.zero module.
Declaring a module dependency is done my using the requires keyword.

module chapter.three {
requires chapter.zero;

The preceding dependency is an explicit one. But there are also implicit
dependencies. For example, any module declared by a developer implicitly requires
the JDK java.base module. This module defines the foundational APIs of the Java SE
Platform, and no Java application could be written without it.

Declaring a module as required, means that that module is required at compile time
and runtime. If a module is required only at runtime, the requires static keywords are
used to declare the dependency. Keep that in mind for now; it will make sense when I
talk about web applications.

But is it enough to declare our module as dependent of another? Does this mean
that the dependent module can access all public types (and their nested public and
protected types)? If you are thinking not, you are right. Just because a module depends
on another, it does not mean it has access to the packages and classes that it needs to.
This is because the module it depends on must be configured to expose its insides. How
can that be done? In our case, we need to make sure module chapter.zero gives access
to the required packages. This is done by customizing the module-info. java for this
module by adding the exports directive, followed by the necessary package names.

module chapter.zero {
exports com.apress.bgn.cho;

68

CHAPTER 3 GETTING YOUR FEET WET

By doing this we have given access to the com.apress.bgn.cho0 package to any
module that requires this package as a dependency. What if we do not want that?

I If you were curious and read the recommended Jar Hell article, you noticed
that one of the concerns of working with Java sources packed in Jars, was
security. Because even without access to Java sources, objects could be accessed,
extended, and instantiated by adding a Jar as a dependency to an application.

So, aside from providing a reliable configuration, better scaling, integrity for the
platform, and improved performance, the goal for introduction of modules was
better security.

What if we want to limit the access to module contents only to the chapter.three
module? This can be done by adding the to keyword followed by the module name to
the exports directive.

module chapter.zero {
exports com.apress.bgn.cho to chapter.three;

More than one module can be specified to have access by listing the desired

modules, separated by comma.

module chapter.zero {
exports com.apress.bgn.cho to chapter.three, chapter.two;

And that’s about all you need to know about modules for the moment.

Determining the Structure: A Java Project

I When this chapter was written, JDK 11 EAP has just been released. Shortly
after, Gradle version 4.9 and IntelliJ IDEA version 2018.2 were released and they
fully supported development using JDK 11. So, from this section onward Java 11
will be referred in the rest of the book.

69

CHAPTER 3 GETTING YOUR FEET WET

There are a few ways Java projects can be structured. It depends on the project’s
scope and the build tool used.

You might wonder why does the project scope influence its structure because you
expect there should be a standard for this, right? Well, there is more than one standard,
and that is dependent on the project scope, because the scope, the reason for creating a
Java project influences its size. And if a project is small, it might not require you to split
the sources into subprojects, and you do not need a build tool either, and build tools
come with their own standard way of organizing a project. Let’s start with the smallest
Java project ever, which should print Hello World! to the console.

The HelloWorld! Project in IntelliJ IDEA

As a side note, you do not even need a project because you have JShell. Open a terminal
(Command Prompt for Windows) and JShell, and enter the System.out.print("Hello
World!") statement.

$ Jjshell
| Welcome to JShell -- Version 11-ea
| For an introduction type: /help intro

jshell> System.out.print("Hello World!")
Hello World!

Since you installed Intelli] IDEA, let’s create a Java project and check what project
structure the editor chooses for us. Start with the first Intelli] IDEA and click the Create
New Project option. A second dialog window appears on top with the types of projects
that you can create listed on the left. The two dialog windows mentioned here are
depicted in Figure 3-9.

70

CHAPTER 3 GETTING YOUR FEET WET

IntelliJ IDEA

+ Create New Project

® ® New Project
% Java Project SDK: | b= 11 B [new.
ol J2ME
® Clouds Kotlin DSL build script
#) Spring Additional Libraries and Frameworks:
: Java
= Java FX -
G Groovy
#% Spring Initializr)
4 M ° K Kotlin (Java)
T Maven
R
& Groovy
Static Web
¢ Flash
K Kotlin
= oo

Figure 3-9. Create an Intelli] IDEA project

Select Java project type from the left and click Next. (Do not select any of the
additional libraries and frameworks, we are actually creating the smallest Java project
possible.) In the next dialog window, the project name and location can be introduced.
As we are creating a Java 11 project, you can notice at the bottom a section used to
configure the Java module. This configuration window is depicted in Figure 3-10.

71

CHAPTER 3 GETTING YOUR FEET WET

® ® New Project
Project name: sandbox

Project location: ~/apress/workspace/sandbox

|~ More Settings
Content root: .ﬂJsersﬂuIiana,cosmina{’apress,’workspace{sandbox

Module file location: fUsersfiuliana.cosminafapress/workspace/sandbox

Project format: .idea (directory based) B

T Cancel Previous m

Figure 3-10. Intelli] IDEA project configuration dialog window

After inserting the project and module name- we used sandbox for both project
name and module name- click Finish and the next window should be the editor
window, in which you can start writing code. If you expand the sandbox node on the left
(that section is called the project view), you can see that the project is built using the JDK
you have installed (in this case 11) and a src directory was created for you. Your project
should look a lot like the one depicted in Figure 3-11.

[e sandbox [~/apressfworksp:
& sandbox |

E Project = D | B -

= = sandbox -[apress/workspacefsandbox

@

Il External Libraries
2 <11 > [Library/Java/JavaVirtualMachinesfjdk-11.jdk/Contents/Home

© Scratches and Consoles

I 1: Project

Figure 3-11. Intelli] IDEA project view

72

CHAPTER 3 GETTING YOUR FEET WET

Before writing code, let’s check out what other project settings are available. IntelliJ
IDEA provides you access to view and edit project properties through the File » Project
Structure... menu item. If you click it, a dialog window opens, similar to the one
depicted in Figure 3-12.

® @ Project Structure
Project name:
sandbox

Project Settin

Project SDK:
Modules This SDK is default for all project modules.

EE A module specific SOK can be configured for each of the modules as required.
Libraries

Facets = 11 (java version "11 E New... Edit
Artifacts Pﬂlaiact language It_wal: :
This language level is default for all project modules.
Platform Setti A module specific language level can be configured for each of the modules as required.
SDKS e ¥ SDK default (11 - Local variable syntax for lambda parameter B

Global Libra 6 - @Override in interfaces

7 - Diamonds, ARM, multi-catch etc.

8 - Lambdas, type annotations etc.

9 - Modules, anare me‘:hods in interfaces etc. Evion cote
. 10 - Local variable type inference

s modules as
¢ 1-preview - Raw string literals

X - Experimental features
o gl Vgt

i
Problems 1
1

Figure 3-12. Intelli] IDEA project settings tab

By default, the Project settings tab is opened. In Figure 3-12, there are two arrows
attracting your attention to the Project SDK: section, which is depicting the JDK version
for a Java project, and the Project language level: section. At the time this chapter was
written, JDK 11 EA was the most recent version. The most recent version of Intelli] IDEA
supports syntax and code completion for Java 11, which is why it is depicted here. This is
the meaning of the project language level setting.

If you switch to the tab named Modules you see the information depicted in Figure 3-13.

73

CHAPTER 3 GETTING YOUR FEET WET

® 5] Project Structure
- + — B
Name: sandbox
- - . sandbox
Project Settin
Project Sources Paths Dependencies
. .
T Module SDK: [Project SDK (11 B new. Edit
joraries
Facets Export Scope
Artifacts B= 11 (java version *11%)
RS <Module sources>
SDKs
Global Libra
Problems
+ -
Dependencies storage format: IntelliJ IDEA (.im) [
? cancel | | poy | (K

Figure 3-13. Intelli] IDEA modules settings tab

I Let’s clarify something first. The Modules tab does not show information
about Java modules in your project. Aside from Java modules, that wrap packages
together; a module is also a way to wrap up Java sources and resource files

with a common purpose within a project. That is why, before Oracle introduced
the module concept to modularize Java applications, the code making up these
applications was already modularized by developers that needed to structure big
projects in some practical way.

In the Modules tab, you can see the number of parts (modules) that a project has and
the settings for each part. The sandbox has one part: one module named also sandbox
and the source for this module is contained in the src directory. So, if we want to write a
class that prints Hello World!, the file called HelloWorld. java must be placed under it. If
you right-click the src directory, the menu depicted in Figure 3-14 appears.

74

CHAPTER 3 GETTING YOUR FEET WET

[NON] sandbox [~/apress/workspace/sandbox]
" sandbox) ' src) O v
g B Project v Q = | B
E v [sandbox ~/apress/workspace/sandbox |
=1 > [.idea ;
. Ba are —_—
® New > JavaClass |
% v |l Exti Ve %x | ' Kotlin File/Class
= > B £ File
|$' [Copy *e # Scratch File O8N
3 Copy Path 0 3C % Package €—
Copy Reference X{¢#8C | ., ;
[l Paste ey | O . F”e. -
| i1 package-info.java —
Find Usages CE7 & module-info.java e
Find in Path... ¢ BF 2 HTML File
Replace in Path... ¥R = ot
A » | = J?VGFXADDHCE\UOI’\
Singleton

Figure 3-14. Intelli] IDEA menu listing which Java objects can be created in the
src directory

Aside from the Java Class option, there are a few red arrows showing you what other
components can be in the src directory. Let’s go ahead and create our class. Click the
Java Class menu option, and after introducing the class name, expand the Kind: drop-
down list. Figure 3-15 shows the expanded list.

8] @ Create New Class
Name: HelloWorld Tl |
Kind: _|' € Class B

I Interface

E Enum

q @ Annotation r
a1 JavaFXApplication
= Singleton

Figure 3-15. Intelli] IDEA dialog windows to create a Java data type

75

CHAPTER 3 GETTING YOUR FEET WET

The core building block of a Java application is the Java class, but there are other
object types in Java. In the Kind: list, the four Java object types are listed. Each of them
is explained in detail later; for now, select Class and click the OK button. You notice that
a file named HelloWorld. java was created under the src directory and the contents of
that file are quite simple.

/**

* Created on 3/3/18.

*/

public class HelloWorld {

}

You have created your first Java class in your first simple Java project. It does
nothing yet. But it can be compiled by selecting from the Intelli] IDEA Build menu, the
Build Project option, or by pressing a combination of keys, that is different for each
operation system. Compiling the Build Project option produce the HelloWorld.class
file, containing the bytecode. By default, Intelli] IDEA stores compilation results into a
directory named out\production. The menu option for compiling your project and the
result are depicted in Figure 3-16. The menu option is marked with (1).

76

CHAPTER 3 GETTING YOUR FEET WET

@ IntellJIDEA File Edit View Navigate Code Analyze Refactor EN[El Run Tools VCS Window Help

Build Project #ro £
Build Module 'sandbox'
Recompile 'HellowWorld.java' {+3r9

Rebuild Project

Generate Ant Build...

20 [# sandbox [~/ap f - el emse [52N ADOX]
W5 sandbox) i src) (€ HelloWorld) 3 v
| [Project - € & | ##- |- ([© Helloworld java
g’ v B3 sandbox ~/apress/workspace/sandbc 1 /o
= > idea 2 « Created by iuliana.cosmina on 3/3/18.
¥a pac i «/
/ = o i " public class HelloWorld {
= production :
g v Iu sandbox ¢ }
£ €, HelloWorld.class Copy Reference TO®C
) S 0l Paste %V
_ = ::I:)o\n’.folrld Paste from History... {38V
FT e 0E S Paste Simple Xo®RY
2 » ||l External Libraries =
§ Column Selection Mode T #8
]
w
G Refactor >
*
i 0:Messages B 6:TODO [E Terminal Folding :
B c . fully in 25 11ms (a minute age Analyze
Go To »
Generate... #N
Recompile 'HelloWorld.java' 0 #F9
Local History >

I3+ Compare with Clipboard
File Encoding

® Create Gist...

Figure 3-16. Intelli] IDEA—how to compile a Java project

When you have more classes in your project, you can compile the one you modify by
right-clicking the class body and choosing Recompile [ClassName].java, marked with (2)

in Figure 3-16.

It is time we make the class print Hello World!. For that we need to add a special
method to the class. Any Java desktop application has a special method named main that
has to be declared in a top-level class. This method is called by the JRE to run the Java
program/application and I call it the entry point. Without such a method, a Java project

is a collection of classes that are not runnable, cannot be executed, and cannot perform

certain functions. Imagine it this way: it’s like having a car, but you have no way of
starting it, because the ignition lock cylinder is missing. By for all intents and purposes,

77

CHAPTER 3 GETTING YOUR FEET WET

itis a car, but it cannot perform the main purpose of a car, which is to take you somewhere.
You can imagine the main method as the ignition lock cylinder, where the JRE inserts the
key to get your application running. Let’s add that method to the HelloWorld class.'®

Ve
* Created on 3/3/18.

*/

public class HelloWorld {

public static void main(String... args) {
System.out.println("Hello World!");

Now, let’s run this class. In Intelli] IDEA, you have also two options: from the Run
menu choose the Run '[ClassName]' option, or right-click the class body and select
Run '[ClassName]'.main() from the menu that appears.'

Figure 3-17, depicts the menu items that you can use to execute the class, as well as
the result of the execution.

8Because Intelli] IDEA is an awesome editor, you can generate the main method, by typing psvim
and pressing the Tab key.

“Next to the Run menu item, a combination of keys is depicted that can be used to run the class.

78

CHAPTER 3 GETTING YOUR FEET WET

& IntellilJIDEA File Edit View Navigate Code Analyze Refactor Build [T Tools VCS Window Help

[BoN] [% sandbox [~/apress/wor fsandbox] - .../sre/Hellowd Run 'HelloWorld* “R
4 sandbox) [src) (€ Helloworld ﬁi Debug 'HelloWorld' “pilq
5 Proj @ i | B 1| @ HolloWorldi ¥ Run 'HelloWorld' with Coverage
roiect = 3 - I ! Jav “
g He PN ¢ e P Run... AXR
E ”“"::: ARPTEEIRIRGREERD & Crestid by fuliscs. cocaing on 3/l Debug. ~XD X
%
gl . ¢ b public class HelloWorld {
production
.g; sandbox O public static void main{String... args) {
g €} HelloWorld.class System.out.printin{“Hello World!™);
Ry src . } }
41 €' HelloWorld
n Sandbox.imi % =
lilli External Libraries Recompile 'HelloWorld java' {+3%F0
Run 'HelloWorid.main()! ~OR
#£ Debug 'HelloWorld.main()' ~{4D
¥ Run 'HelloWorld.main{)' with Coverage
HelloWorld
Run 7 HelloWorld [A
> SLibrary/Java/JavaV¥irtualMachines/jdk-1@. jdk/Contents/Home/bin/java "-javaagent:/Applications/Intellil IDEA CE.app/Contents/Lli
Hello WOrld! efe——xecution result
., Process finished with exit code @
2 &3
E o
am
"; »
0:Messages P ARUR| B 6:TODO [E Terminal () Event Log

Figure 3-17. Intelli] IDEA—how to execute a Java class

So, this is the most basic structure for a Java Project. This project is so simple that it

can also be compiled manually from the command line. So, let’s do that.

The HelloWorld! Project Compiled and Executed Manually

You've probably noticed the Terminal button in your Intelli] IDEA. If you click that
button, inside the editor a terminal window will be opened. For Windows it is a
Command Prompt instance, for Linux and macOS are the default shell. And Intelli] open
your terminal right into your project root. The following explains what you have to do.

1. Enter the src directory by executing the following command:
cd src

cd is a command that works in Windows and Unix systems and is

short for change directory.

2. Compile the HelloWorld. java file by executing:

javac HelloWorld.java

79

CHAPTER 3 GETTING YOUR FEET WET

javac is a JDK executable used to compile Java files that Intelli] IDEA

calls in the background.

3. Run the resulting bytecode from the HelloWorld. class file by

executing:
java HelloWorld

Figure 3-18 depicts the execution of those commands in a terminal in Intelli] IDEA.

[BN] |% sandbox [~fapress/workspace/sandbox] - .../src/HelloWorld.java [sandbox]
% sandbox) [src s HelloWorid ~ | b #K ¥2 mQ

07 Project - @ %= | #- Iv @ HelloWorld.java
% = sandbox ~/apress/workspace/sandbc 1 [/ ke W
] > .idea x Created by iuliana.cosmina on 3/3/18
" src ey

. blic class HelloWorld
T £' HelloWorld PN 1
3 ax: HelloWorld.class > | public static void main(String... args) {
g ,, sandbox.iml System.out.printin("Hello World!");
: lIlli External Libraries | y
HelloWorld

Terminal 2. L

+ iuliana. cosmina QROSBZM4B44324X ~/apress/works s cd src
_E % iuliana. cosmina 1@ROSDZM4R44324X ~ " o x/sre 5 javac HelloWorld.java
§ iuliana. cosmina @ROSBZMAB44324X ~/apress/workspace/sandbox/src $ java HelloWorld
i Kello World!
* iuliana. cosmina @ROSBZM4044324X ~/apress/workspace/sandbox/src 5

f# D:Messages > &:Run T2 6: TODO | [Terminal () Event Log
[synchronize ‘sre’ completed successfully. 86 LF: UTF-8: & &

Figure 3-18. Manually compile and run the HelloWorld class in a terminal inside
Intelli] IDEA

Looks simple, right? And it actually is simple, because no packages or Java modules
were defined. But wait, is that possible? Well, yes. If you did not define a package, the
class is still part of an unnamed default package that is provided by default by the JSE
platform for the development of small, temporary, and educational applications like the
one you are building. So, let’s make our project a little bit more complicated and add a

named package for our class to be in.

80

CHAPTER 3 GETTING YOUR FEET WET

Putting the HelloWorld Class in a Package

In Figure 3-14, there is a Package option in the menu. So right-click the src directory
and select it. A dialog window appears where you must enter the package name. Enter
com.sandbox. Figure 3-19 shows the dialog windows. Even though the package was
already created, I introduced the same name again to show how the IDE warns that you

are trying to create a package with the same name.

. sandbox ; ' src)

«5 7 Project v Q % | - N ¢’ HelloWorld java

g = sandbox ~/apress/workspace/sandbc 1

i .idea : * Created by iuliana.cosmina ¢
3 A

s :

Sus : » public class Helloworld {

o src b public static void main{Str

E com.sandbox System.out.printin{"Hel

3 & HelloWorld ' }

w

A a Sandbox.iml }

£ Il External Libraries

[N New Package

Enter new package name:

IJ

com.sandbox

A directory with name 'sandbox’ already exists

Cancel ﬁ

Figure 3-19. Create package in Intelli] IDEA

So, we created the package, but the class is not in it. Well, the way to get it there, is
to select it and drag it into it. A dialog window for moving the class appear, because the
editor must modify the class to make it to belong to the package by adding a package
statement. And it requires your approval for the operation. Figure 3-20 depicts this dialog

window.

81

CHAPTER 3 GETTING YOUR FEET WET

5 sandbox » I src) € HelloWorld
7 Project - 0D 5 | -1 € HelloWorld java

g = sandbox ~/apress/workspace/sandbox 1 /e
] .idea i & Created by iuliana.cosmina on 3/3/18
L out hh

1 b public class HelloWorld {

- public static void main{String... args
¢ src » blic stati id main(Stri) A
2 com.sandbox ystem.out.println("Hello World!");
g db 5 In{"Hell 1d!")
2 €' Helloworld }
f_-, a Sandbox.iml }
I |lln External Libraries

@ @ Move

Move class HelloWorld
To directory: .grajdeanufapress/workspace/sandbox/src/comjsandbox
Search in comments and strings Search for text occurrences

Open moved classes in editor

? Cancel Preview

Figure 3-20. Moving a class into a package in Intelli] IDEA

Click the Refactor button and look at what happens to the class. The class should
now start with a package com.sandbox; declaration. If you rebuild your project, and
then look at the directory structure, you see something similar to what is depicted in
Figure 3-21.

iuliana. cosmina @ROSBZM4044324X ~/apress/workspace/sandbox $ tree

}— out

| L— production

| L— sandbox

| L— com

| L— sandbox
| L— HelloWorld.class

}— sandbox. iml
L— src

L— com
L— sandbox
L— HelloWorld.java

8 directories, 3 files

Figure 3-21. New directory structure after adding the com.sandbox package

82

CHAPTER 3 GETTING YOUR FEET WET

If you compile and execute the class manually, you must consider the package now,
so your commands change to

~/sandbox/src: $ javac com/sandbox/HelloWorld.java
~/sandbox/src: $ java com/sandbox/HelloWorld
Hello World!

But things do not end here, because we still have Java modules. So, what about
that? How is our code running without a module-info. java file? Well, there is a
default unnamed module, and all JARs, modular or not, and classes on the classpath
are contained in it. This default and unnamed module exports all packages and reads
all other modules. Because it does not have a name it cannot be required and read by
named application modules. Thus, even if your small project seems to work with JDKs
in versions 9 and higher, it cannot be accessed by other modules; but it works because it
can access others. (This ensures backward compatibility with older versions of the JDK,
but depending on the complexity of the project, compatibility is not always ensured.)
This being said, let’s add a module to our project.

Configuring the com.sandbox Module

Configuring a module is as easy as adding a module-info. java file under the src directory.
In Figure 3-14, in the menu listed there is amodule-info. java option and if you select
that, the IDE generates the file for you. All is well and fine, and if you do not like the
module name that was generated for you, you can change it. I changed it to com. sandbox
to respect the module naming convention established by Oracle developers.

/**

* Created on 3/3/18.
*/
module com.sandbox {

}

What happens now that we have a module? Not much from the IDEs point of view.
But if you want to compile a module manually, you have to know a few things. I compiled
our module using the following command:

~/sandbox/sxrc/: $ javac -d ../out/com.sandbox \
module-info.java \
com/sandbox/HelloWorld. java

83

CHAPTER 3 GETTING YOUR FEET WET

I "\"is a macOS/Linux separator. On Windows, either write the whole command
on a single line or replace "\" with "~".

Let me explain what I did there. The syntax to compile a module is this:

javac -d [destination location]/[module name] \
[source location]/module-info.java \
[java files...]

The result of executing that command is that a directory named com. sandbox in the
out directory is created—the module name. Under this directory, we have the normal
structure of the com. sandbox package. The contents of the out directory are depicted in
Figure 3-22.

Terminal

-+ iuliana. cosmina (2ROSDZMAB44324X press $ javac -d ../fout/com.sandbox module-info.java com/sandbox/HelloWorld. java
iuliana, cosming |EROSBZMA044I24X ~/apress/wo X, % ¢d .. out/

iuliana. cosmina @ROSBZM4B44324X ~/apress/workspace/sandbox/out 5 tree

e
L— com. sandbox
— com
| — sandbox

| L— HelloWorld. class
— module-info.class

3 directories, 2 files
iuliana,grajdeanu@ROSBZNA044324X ~/apress/workspace/sandoos/ou s

$:Messages P &Run D 8:TODO | E Terminal | Ex

Figure 3-22. Java module com.sandbox compiled manually

As you have noticed in this example, the module does not really exist until we
compile the sources, because a Java module is more of a logical mode of encapsulating
packages described by the module-info.class descriptor. The only reason the com.
sandbox directory was created is that we specified it as argument in the javac -d
command.

We have a compiled module, what do we do with it? We try to run the application
obviously.

sandbox/: $ java --module-path out \
--module com.sandbox/com.sandbox.HelloWorld
Hello World!

84

CHAPTER 3 GETTING YOUR FEET WET
The syntax to execute a modular application is this:

java --module-path [destination location] \
--module [module name] /[package name].HelloWorld
Hello World!

Regarding the module name, doesn’t it seem a little redundant? To me it sure looks
like it, which is why I prefer not to create directories for modules unless I have more of
them under the src directory. And we must talk about the standard naming conventions
for modules. That is also another thing that might give developer headaches if they
want to create directories for modules. In multiple blog articles and Oracle Magazine
(September 2017), this is recommended.?’ But do not worry about it for now; the book’s
sources contain modules with simple names, and the module configuration is already in
place for you.

Java Projects Using Build Tools (Mostly Gradle)

Maven is a build automation tool used primarily for Java projects. Although Gradle is
gaining ground, Maven is still one of the most used build tools. Tools like Gradle and
Maven are used to organize the source code of an application in interdependent project
modules and configure a way to compile, validate, generate sources, test, and generate
artifacts automatically. An artifact is a file, usually a JAR, that gets deployed to a Maven
repository. A Maven repository is a location on an HDD where JARs are saved in a special
directory structure.

The discussion about build tools must start with Maven, because this build tool
standardized a lot of the terms we used in development today. Gradle respects a lot of
Maven standard rules was chosen as the go-to build tool for the sources attached to this
book, because it is easier to configure and the configuration files are reduced in size. A
project split into multiple subprojects can be downloaded from GitHub, and built in the
command line or imported into Intelli]. This approach makes sure that you get quality
sources that can be compiled at once. It is also practical, because I imagine you do not
want to load a new project in Intelli] IDEA every time you start reading a new chapter.
Also, it makes it easier for me to maintain the sources and adapt them to a new JDK, and
with Oracle releasing so often, I need to be able to do this quickly.

»QOracle Magazine from September 2017 can be accessed at http://www.javamagazine.
mozaicreader.com/SeptOct2017#&pageSet=298&page=0

85

http://www.javamagazine.mozaicreader.com/SeptOct2017#&pageSet=29&page=0
http://www.javamagazine.mozaicreader.com/SeptOct2017#&pageSet=29&page=0

CHAPTER 3 GETTING YOUR FEET WET

The project you use to test the code written in this book and write your own code
if you want to, is called java-for-absolute-beginners. It is a multimodule Gradle
project. The first level of the project is the java-for-absolute-beginners project, that
has a configuration file named build.gradle. In this file, all dependencies and their
versions are listed. The child projects, the ones on the second level, are the modules of
this project. And we call them child projects because they inherit those dependencies
and modules from the parent project. In their configuration files, we can specify which
dependencies are needed from the list defined in the parent. And these modules are
a method of wrapping up sources for each chapter and that is why these modules are
named chaptero00, chapter01, and so forth. If a project is big and needs a lot of code to
be written, the code is split again in another level of modules. Module chapter05 is such
a case, and is configured as a parent for the projects underneath it. In Figure 3-23, you see
what this project looks like loaded in Intelli] IDEA, and module chapter05 is expanded
so you can see the third level of modules. Each level is marked with the corresponding
number.

86

CHAPTER 3 GETTING YOUR FEET WET

i Q ® M java-for-absolute-beginners [~/apress/workspace/java-for-absolute-beginners] - ..
» lava-for-absolute-beginners) B A ReactorDemo v P

| Project « 0 = =

v java-for-absolute-beginners - /¢ press/workspacefjava-for-absolute-beginners
.gradle

I 1:Project

»
» .idea
» 5 chapter00
» 5 chapter01
v [z chapter03
» build
4 out
3 src
¥ chapter03.gradle
= Chapter04
= Chapter05 (2)
» [arrays
» [calendar-date
» [collections (3)
» 14 concurrency
>
3

Learn

4

= Primitives
. references
@ chapter05.gradle
» 5 chapter06
» [chapter07
» chapter08
» 5 chapter09
» 5 chapter10
» 5 chapterl
» [chapter12
» 5 chapter13
.gitattributes
= .gitignore
= 9781484237779.jpg
build.gradle
4 Contributing.adoc
'sd errata.adoc

m java-bgn.iml
= java-for-beginners.png
= LICENSE.txt
'sa README.adoc
¥ settings.gradle
« |l External Libraries
» P <11 > [Library/Java/JavaVirtualMachines/jdk-11.jdk/Contents/Home

Z: Structure

Figure 3-23. Gradle multimodule-level structure

87

CHAPTER 3 GETTING YOUR FEET WET

In the Appendix you can read a detailed explanation for the configuration of this
Gradle project. For now, if you have loaded it into Intelli] IDEA as you were taught in
Chapter 2, you can make sure everything is working correctly by building it. Here’s how
you do it.

You can do it by using the Intelli] IDEA editor, in the upper right side you should
have a tab called Gradle projects.

If the projects are loaded as they are depicted in Figure 3-24, the project was loaded
correctly. If the Gradle projects tab is not visible, look for a label like the one marked
with (1), and click it.

@20 E java-bgn [~fapress/worl j bgn] - ...fchapter11/serialization/src/main/java/ /apress{bgn/ch1 1/SerializationDemo.java [serialization_main]
§ src) g main) java } Em com apress) D bgn) Bm ch11) @ SerializationDemo)} $i java-bgn buils] ~ | B ¥ ¥E o 9 o f.T’E Q
[Prx © 4 | #6- 1= @ SeralizatiorDemojava «E5 Gradle proiects I
g‘ e jave-bgni ~[apress 1 package com.apress.bgn.chll; ¥ (+ @ T EE 4 B
B -gradie 2 v . -
‘- idea 3 b public class erializationDemo { ¥ (% java-bgn
Ih er00 a ¥ (& java-bgn (root)
g RENagt 2 public static void main{Strii . Tasks
3 chapter01 6 System.out.printin{"Here g 12579
E s chapter03 ¥ v UG bul
g bui 14 assemble
~ wild } @
0 out
sre 4 buildDependents
(& chapter03.g1 £ buildNeeded
chapter04 14 classes
- b
= chapter05 L+] F:Iean
= collections 4F jar 5
3 data-structu . b-ﬂu-i;::et:sses
5 data-types] P-.
% primitives & documentation
(& chapter05.gr @ hﬁ:r
% Chapter06 c.,o& er ~
% chapter07 SerializationDemo ° verr’lc_a.lon)
Run (%' java-bgn [build] & L
> :chapterll:read-write-file:testClasses UP-TO-DATE

:chapteril:read-write-file: junitPlatformTest UP-TO-DATE
ichapterlil:read-write-file:test SKIPPZD
:chapterll:read-write-file:check UP-TO-DATE
ichapterll:read-write-file:build UP-TO-DATE
:chapterll:serialization:compilelava UP-TO-DATE
:chapteril:serialization:processResources NO-SQURCE
:chapterll:serialization:classes UP-TO-DATE
schapterll:serialization: jar UP-TO-DATE
:chapteril:serialization:assemble UP-TO-DATE
:chapterll:serialization:compileTestJava NO-SOURCE
:chapteril:serialization:processTestResources NO-SOURCE
ichapterll:serialization:testClasses UP-TO-DATE
schapteril:serialization: junitPlatformTest UP-TO-DATE
ichapteril:serialization:test SKIPPED
ichapterlliserialization:check UP-TO-DATE
ichapteril:serialization:build UP-TO-DATE

@ &

03

~ X %
(= e

BUILD SUCCESSFUL in @s
T T —to-date
12:26:13 AM: Task execution finished 'build'.

W 2: Favorites

P &Run %D 6:TODO W 9: Version Control B Terminal ¥ Build 3 Event Log

(]

The modules below are not imp: from Gradle any P] D _main ff /| Open ... (40 minutes ago) 314 LF: UTF-85 Git:masters ‘& E_'_}

Figure 3-24. Gradle multimodule-level structure

88

CHAPTER 3 GETTING YOUR FEET WET

Expand the java-for-absolute-beginners(root) node until you find the build
task, marked with (2). If you double click it and in the view at the bottom of the editor
you do not see any error, all your projects were built successfully.

The second way to make sure the Gradle project is working as expected is to build
it from the command line. Open an Intelli] IDEA terminal, and if you installed Gradle
on the system path as explained in Chapter 2, enter gradle clean build and hit the
Enter key. In the command line, you might see some warnings, if the Gradle plugin for
supporting Java modules is still unstable when this book reaches you, but as long as the
execution ends with BUILD SUCCESSFUL, everything is alright.

Aside from the sandbox project, all the classes, modules, and packages mentioned
in this section are part of this project. chapter00 and chaptero1 do not really contain
classes specific to those chapters. I needed them to construct the Java module examples.
Intelli] IDEA sorts modules in alphabetical order, so the naming of the chapter modules
was chosen this way. They are listed in the order that you should work with them. Until
now, this chapter was focused on the building blocks of Java applications, and you
created a class that prints Hello World! by following the instructions, but the details were
not really covered. Let’s do that now and enrich the class with new details.

Explaining and Enriching the Hello World! Class

We wrote a class named HelloWorld in our sandbox project. I propose you to add that
class to the chapter03 module. Just copy it or create it under the com.apress.bgn.ch3.
helloworld package, and let’s analyze it first and then see what more can we do with it.
In Figure 3-25, the class is depicted in the Intelli] IDEA editor, and a few details about the
IDE are underlined. Let’s talk about the class first.

89

CHAPTER 3 GETTING YOUR FEET WET

L] @ ,! java-bgn [~/apress/workspace/java-bgn] - .../chapter03/src/main/java/com/apress/{bgn/ch3/helloworld/HelloWorld...

. java-bgn ; ' chapter03 src) g main

i1 7: Structure

§ B~ Project - 0 =
g njava—bgn ~fapressfworkspace/java-bg 1
i
L]

.gradle
.idea
% chapter00
2 chapterQ1
= chapter03
build
out

& main
java
com.apress.bgn.ch3
byeworld
helloworld
&' HelloWorld
c' Main
i module-info.java
resources
4 test
chapter03.gradle

jova) B cor 45 [etoworo -]| b |

€ He oWorld.java

package com.apress.bgn.ch3.helloworld

public class HellowWorld {

public static void main{String(] args) {

System.out.printin{"Hello World!");

.__nr’ Q_J:

Run Button +

Run
Configuration

Figure 3-25. Adding HelloWorld to the java-for-absolute-beginners project

90

The following explains the lines that contain different statements.

o the package declaration: When classes are part of a package their
code must start with this line that declares the package the class is
part of. The package is a reserved keyword in Java and cannot be used

for anything else but declaring a package.

o <empty for convenience> (left empty so the picture looks nicer)

o the class declaration: This is the line where we declare our class;
itis public so it can be seen from everywhere; it is a class named
HelloWorld. The body of a class is enclosed between curly brackets,

and the opening bracket is on this line as well.

o the main() method declaration: In Java, a method signature is the
method name and the number, type, and order of its parameters.
A method also has a return type, as in the type of result it returns.
But there is also a special type that can declare methods that do not
return anything. In order of appearance, the following explains what

every term of the main() method represents.

S'@mQ

>

apeio

CHAPTER 3 GETTING YOUR FEET WET

e public: A method accessor; the main method must be public;
otherwise, JRE can’t access it and call it.

o static: When an object of that class type is created, it has the fields
and methods as declared by the class. The class is a template
for creating objects. Because of the static keyword, the main
method is not associated with an object of a class type, but with
the class itself. More information about this in Chapter 4.

o void: This keyword is used here to tell us that the main method
does not return anything, so it’s like a replacement for "no type",
because if nothing is returned there is no need for a type.

e String[] args: Methods are sometimes declared as receiving
some input data, String[] args represents an array of text
values. (Arrays are sets of data of fixed length; in mathematics
they are known as a one-dimension matrix or vector.) String
is the class representing text objects in Java. The [] means array
and args is its name. But wait, we’ve run this method before and
we did not need to provide anything! Well, it is not mandatory,
but you'll see how you can give it arguments (values provided to
the method, which are used by the code in its body) after this list.

I In previous code samples, you might have noticed that the main method was
written like this:

public class HelloWorld {

public static void main(String... args) {
System.out.println("Hello World!");

}

The three dots are referred to as varargs and allow you to pass more than one
string to the method. It’s an alternative way of writing this method and it is used
in the book when the sources require some special formatting that involves [].

o {: The starting bracket of the main() method body.

e <empty for convenience> (left empty so the picture looks nicer).
91

CHAPTER 3 GETTING YOUR FEET WET

e System.out.println("Hello World!");: A statement used for writing
Hello World in the console.

o }: The closing bracket of the main() method body.
e }: The closing bracket for the class body.

If we execute this class, Hello World! gets printed in the console. Figure 3-17 shows
how to execute a class with amain() method in it. After executing a class that way, Intelli]
IDEA automatically saves the configuration for that execution in a run configuration and
displays it in a drop-down list next to a triangular green button that executes that class
by clicking it. Both are placed on the IDE header and ostentatiously pointed to you in
Figure 3-25. Those two elements are really important because a run configuration can be
edited and added arguments for the JVM and the main() method. Let’s first modify the
main() method to do something with the arguments.

package com.apress.bgn.ch3.helloworld;

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello " + args[o] + "!");

I Arrays are accessed using indexes of their elements, and the counting starts

in Java from 0. Consequently, the first member of an array can be found at 0, the
second at 1 and so on. But arrays can be empty, so in the previous code snippet, if
no argument is specified, the execution of the program crash and in the console an
explicit message are printed in red.

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0
at chapter.three/com.apress.bgn.ch3.helloworld.HelloWorld.
main(HelloWorld.java:5)

When we try to access an empty array, or an element of an array that

does not exist, Java programs crash and the JVM throws an object of type
ArrayIndexOutOfBoundsException containing the line where the failure
happened and the index of the element we were trying to access. Exception

92

CHAPTER 3 GETTING YOUR FEET WET

objects are used by the JVM to notify developers of exceptional situations when a
Java execution does not work as expected and these objects contain information
on where in the code it happened and what caused the problem.

The modification we did in the previous code snippet prints the text value provided
as argument when executing the class. Let’s modify the run configuration for this class
and add an argument. If you click the small gray arrow next to the Run configuration
name, a menu appears. Click Edit Configurations... and inspect the dialog window
shown in Figure 3-26 .

»

nain) B java) 8 com) [apress) [bgn ; B9 ch3) B0 helloworld | & HelloWorld) % uu-l-'owmﬂE [
i 1 package com.apress.bgn.ch3.helloworld; . K Save 'HelloWorld' Configuration
» public class lelloworld hain
re public static void main{String[] args) { ; HelloWorld
% intinl™ - .
System.out.printin{"Hello " + argsfe] + = 1~}; java-bgn [build]
i
® 0 Run/Debug Configurations
+ -0 ¥ - * Name: HelloWorld Share Single instance only
v [Application =
Main Code Coverage Logs
HelloWorld
> Gradle Main class: com.apress.bgn.ch3.helloworld. HelloWorld
» 9 Defaults
VM options:
Program arguments:
Working directory: /Usersfiuliana.grajdeanu/apress/workspace/java-bgn B
Environment variables:
Use classpath of module: 7 chapter03_main il
JRE: 10 8.
Shorten command line: user-local default: none - java [options] classname arg B
Enable capturing form snapshots
~ Before launch: Build, Activate tool window
1% Build
+
Show this page Activate tool window
i
j ? Cancel Apply m [
WMachines/jd JaK/Te T e/0In7Java .

it code @

Figure 3-26. Customizing a Run configuration

93

CHAPTER 3 GETTING YOUR FEET WET

In the image, the key elements were circled (well, enclosed in a rectangle actually,
but you get the idea!). As you can see in the run configurations list in Figure 3-26, Intelli]
IDEA saves a few of your previous executions, including the Gradle build task, that you
executed earlier in this chapter. In the left of the Run/Debug Configurations dialog
windows, you can see the Intelli] IDEA run configurations grouped by type. By default,
the last run configuration is opened on the right of the window, in this case it should
be the run configuration for the HelloWor1ld class. There are a lot of options you can
configure for an execution and most of them have been automatically decided by the
IDE. The Program arguments: text field is where your arguments for the main() method
are introduced. In Figure 3-26, I introduced Developer. So, if you click the Apply button
and then the OK button, and then execute the class, instead of Hello World! you should
see now Hello Developer! in the console.

So what else can we do with our class? Remember the code the book started with?
Let’s put it in the main main() method.

package com.apress.bgn.ch3.helloworld;
import java.util.list;
public class HelloWorld {

public static void main(String... args) {
List<String> items = List.of("1", "a", "2", "a", "3", "a");
items.forEach(item -> {
if (item.equals("a")) {
System.out.println("A");
} else {

System.out.println("Not A");

1

The import java.util.List; statement is the only type of statement that can exist
between a package and a class declaration. This statement is telling the Java compiler
that object type java.util.List is used in the program. The import keyword is followed
by the fully qualified name of the data type. A fully qualified name of a data type is
made of the package name(java.util), a dot(.) and the simple name of the class(List).

94

CHAPTER 3 GETTING YOUR FEET WET

Without it, the class will not compile. Try it; just put // in front of the statement, which
turns the line into a comment that is ignored by the compiler. You will see the editor
complaining by making any piece of code related to that list bright red.

The statement List<String> items = List.of("1", "a", "2", "a", "3", "a");
creates a list of text values®"*? that are then traversed, one by one, by the forEach
method, and each of them are tested to see if they are equal to the "a" character.®

If you run the class now, you should see a sequence of A and Not A in the console,

each on its own line.

Not A
A
Not A
A
Not A
A

The code we have written until now uses a few types of objects to print a simple
message in the console. The List object is used to hold a few String objects. The
messages are printed using the println() method, that s called on the out object, that
is a static field in the System class. And these are just the objects that are visible to you in
the code. Under the hood, the List objects are processed by a Consumer object created
on the spot that the lambda expression hides for simplicity.

package com.apress.bgn.ch3.helloworld;

import java.util.list;
[import java.util.function.Consumer;]

public class HelloWorld {
public static void main(String... args) {
List<String> items = List.of("1", "a", "2", "a", "3", "a");
items.forEach(new Consumer<String>() {

@verride

ZCreating lists this way was introduced in Java 9

28pecifying what type of elements are in a list by using <> was introduced in Java 5 and it’s called
generics

#The whole expression used to do this is called a lambda expression. This type of syntax was
introduced in Java 8, together with the forEach method.

95

CHAPTER 3 GETTING YOUR FEET WET

public void accept(String item) {
if (item.equals("a")) {
System.out.println("A");
} else {
System.out.println("Not A");

};

It might look scary now, but I promise that this book introduces each concept in
a clear context and compared with real life objects and events so you can understand
it easily. And if that does not work, there are always more books, more blogs, and the
official Oracle webpage for each JDK, which have good tutorials. Where there’s a will,
there’s a way.

! Also, use your IDE! By clicking any object type in the code while pressing the
Control/Command key, the code of the object class is opened, and you can see
how that class was written and you can read the documentation for it directly in
the editor. As an exercise do this for the forEach method and the System class.

Summary

In this chapter, you did the following tasks:
e Learned how to use JShell
o Learned about Java packages and actually created one
e Learned about Java accessors
o Learned about modules
e Created our first Java project with Intelli] IDEA
o Wrote the code for our first program within Intelli] IDEA

e ...that we later compiled manually too

96

CHAPTER 3 GETTING YOUR FEET WET

» Ran our first program (Hello World!)

e Added packages to it

e Configured a module for it

e ...and compiled and executed it manually too

e Learned about Gradle and how it can make a developer’s life easy

Many of the things you did in this chapter, you will probably do daily after getting
ajob as a Java developer—except for the time you'll spend hunting and fixing bugs in
existing code. You will probably spend a lot of time reading documentation too, because
the JDK has a lot of classes, fields, and methods that you can use to write an application.
And with each released version, things change and you must keep yourself up-to-date.
Brains have limited capacity, so no employer should ever expect you to know every JDK
class and method; but work smart and keep the webpage?* at https://docs.oracle.
com/javase/10/docs/api/ open in your browser. And when you have doubts about a
JDK class or method, you can read about it on the spot.

2*Currently, only the JDK 10 is available at https://docs.oracle.com/javase/10/

97

https://docs.oracle.com/javase/10/docs/api/
https://docs.oracle.com/javase/10/docs/api/
https://docs.oracle.com/javase/10/

CHAPTER 4

Java Syntax

Languages are means of communication—verbal or written—between people. Whether
they are natural or artificial, they are made of terms and have rules on how to use
them to perform the task of communication. Programming languages are means of
communicating with a computer. The communication with a computer is a written
communication; basically, the developer defines some instructions to be executed,
communicates them through an intermediary to the computer, and if the computer
understands them, performs the set of actions, and depending on the application type,
some sort of reply is returned to the developer.

In the Java language, communication is done through an intermediary—the
Java virtual machine. The set of programming rules that define how terms should be
connected to produce an understandable unit of communication is called syntax. Java
borrowed most of its syntax from a programming language called C++, which has a
syntax based on the C language. C syntax borrows elements and rules from languages
that preceded it, but in essence, all of these languages are based on the natural English
language.

Maybe Java got a little cryptic in version 8 because of the introduction of lambda
expressions, but when writing a Java program, if you are naming your terms properly in
the English language, the result should be code that is easily readable, like a story.

A few details were covered in Chapter 3; packages and modules were covered
enough to give you a solid understanding of their purpose to avoid confusion with the
organization of the project and aimless fumbling through the code. But as expected
when it comes to actual code writing, the surface has been barely scratched. Thus, let’s
begin our deep dive into Java.

99

© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_4

CHAPTER 4 JAVA SYNTAX

Base Rules of Writing Java Code

Before writing Java code, let’s go over a few rules that you should follow to make sure
your code actually works. Let’s depict the class we ended Chapter 3 with by adding a few
details.

01. package com.apress.bgn.ch3.helloworld;

02.

03. import java.util.list;

04.

05. /**

06. * this is a JavaDoc comment

07. */

08. public class HelloWorld {

09. public static void main(String... args) {
10. //this is a one-line comment

11. List<String> items = List.of("1", "a", "2", "a", "3", "a");
12. items.forEach(item -> {

13. /* this is a

14. multi-line

15. comment */

16. if (item.equals("a")) {

17. System.out.println("A");

18. } else {

19. System.out.println("Not A");
20. }

21. 1

22. }

23. }

Next, I'll cover each rule in its own section.

100

CHAPTER 4 JAVA SYNTAX

Package Declaration

A Java file always starts with the package declaration. The package name can contain
letters and numbers, separated by dots. Each part matches a directory in the path to

the classes contained in it. The package declaration should reveal the name of the
application and the purpose of the classes in the package. Let’s take the package naming
used for the sources of this book: com.apress.bgn.ch4.basic. If we split the package
name in pieces, the meaning of each piece is described as follows.

o com.apress is the domain of the application, or who owns the
application in this case

o bgnis the scope of the code, in this case the book it is written for (Java
for Absolute Beginners)

e ch4isthe purpose of the classes in Chapter 4

e basicis amore refined level of the purpose for the classes, these
classes are simple, used to depict basic Java notions

Import Section

The import section follows the package declaration. This section contains the fully
qualified names of all classes, interfaces, and enums used within the file. Look at the
following code sample.

package java.lang;

import java.io.Serializable;

import java.io.ObjectStreamField;

import java.io.UnsupportedEncodingException;
import java.lang.annotation.Native;

import java.nio.charset.Charset;

import java.util.Arraylist;

import java.util.Arrays;

import java.util.Comparator;

import java.util.Formatter;

import java.util.locale;

101

CHAPTER 4 JAVA SYNTAX

public final class String
implements Serializable, Comparable<String>, CharSequence {

private static final ObjectStreamField serialPersistentFields =
new ObjectStreamFieldo;

Itis a snippet from the official Java String class. Every import statement makes
reference to the package and the name of a class used within the String class body

Special import statements import static variables and static methods. Static variables
and methods can be used without the need to instantiate a class. In the JDK, there is a
class used for mathematical processes. It contains static variables and methods that can
be used by developers to implement code that solves mathematical problems. Look at
the following code.

package com.apress.bgn.ch4.basic;

import static java.lang.Math.PI;

import static java.lang.Math.sqgrt;

public class Sample extends Object {
public static void main(String... args) {
System.out.println("PI value =" + PI);

double result = sqgrt(5.0);

System.out.println("SQRT value =" + result);

By putting import and static together, we can declare a fully qualified name of a
class and the method or the variable we are interested in using in the code. This allows
us to use the variable or method directly, without the name of the class it is declared in.
Without the static imports, the code has to be rewritten like this:

package com.apress.bgn.ch4.basic;

import java.lang.Math;

public class Sample extends Object {

102

CHAPTER 4 JAVA SYNTAX

public static void main(String... args) {
System.out.println("PI value =" + Math.PI);

double result = Math.sqrt(5.0);

System.out.println("SORT value =" + result);

Another thing that you probably do when writing Java code is to compact import
statements. Compacting imports is recommended when using multiple classes from
the same package to write code, or multiple static variables and methods from the same
class. When doing so, the import section of a file becomes really big and difficult to
read. This is where compacting comes to help. Compacting imports means replacing
all classes from the same package or variables and methods from the same class with a
wildcard so only one import statement is needed. So, the Sample class becomes

package com.apress.bgn.ch4.basic;

import static java.lang.Math.*;

public class Sample extends Object {
public static void main(String... args) {
System.out.println("PI value =" + PI);

double result = sqrt(5.0);

System.out.println("SORT value =" + result);

Java “Grammar”

Java is case sensitive, which means that you can write a piece of code as follows.
public class Sample {

public static void main(String... args) {
int mynumber = 0;
int myNumber = 1;

103

CHAPTER 4 JAVA SYNTAX

int Mynumber = 2;
int MYNUMBER = 3;
System.out.println(mynumber);
System.out.println(myNumber);

System.out.println(Mynumber);
System.out.println(MYNUMBER);

All four variables are different and the last lines print numbers: 0 1 2 3. You cannot
declare two variables sharing the same name, in the same context (e.g., in the body of
a method), because you would be basically redeclaring the same variable and the Java
compiler does not allow this. If you try to do this, your code will not compile, and even
Intelli] IDEA will try to make you see the error of your ways by underlining the code in
red and showing you a relevant message, like in Figure 4-1, where the mynumber variable
is declared twice.

b public class Sample {
» public static void main({String... args) {

int mynumber

e;
int mynumber = @;

1
Variable 'mynumber' is already defined in the scope

Figure 4-1. Same statements example with error

There is a set of Java keywords that can be used only for a fixed and predefined
purpose in the Java code. A few of them have already been introduced: import, package,
public, class. The rest of them are covered at the end of the chapter with a short
explanation for each (see Tables 4-2 and 4-3).

104

CHAPTER 4 JAVA SYNTAX

Except for import, package, interface (or @interface), enum and class declarations,
everything else in a Java source file must be declared between curly brackets ({ }). These
are called block delimiters. Take a look at the beginning of section 4.1. The brackets are
used there to wrap up the following.

« contents of a class, also called the body of the class (brackets in lines
08 and 23)

« contents of a method, also called the body of a method (brackets in
lines 09 and 22)

o asetofinstructions to be executed together (brackets in lines 12 and 21)

Line terminators: code lines are usually ended in Java by the semicolon (;) symbol or
by the ASCII characters CR, LF, or CRLE Colons are used to terminate fully functioning
statements, like the list declaration in line 11. If we have a really little monitor, and we
are forced to split that statement on two subsequent lines to keep the code readable,
the colon at its end tells the compiler that this statement that is correct only when taken
together. Take a look at Figure 4-2.

package com.apress.bgn.chéd.basic;
igort java.util.List;

» public class Sample {

A public static void main(String... args) {
List<String> items = List.of("1", “a", "2, “a", "3", “a");
List<String> =

List.m.'('_'l'.', i T iR i

List<String> badList =_;
LIS aR(o1™; "a%, S sgpw. uge. Hgd)e

Figure 4-2. Different statements samples

The declaration of a list in line 8 is equivalent to the one in lines 10 and 11. The
declaration in line 13 and 14 is intentionally written wrong—a colon is added in line
13, which ends the statement there; but that statement is not valid and the compiler
complains about it when you try to compile that class by printing an exception saying:
"Error: (13, 32) java: illegal start of expression”.If the error message does
not seem to fit the example, think about it like this: the problem for the compiler is not

105

CHAPTER 4 JAVA SYNTAX

the wrongful termination of the statement, but that after the = symbol, the compiler
expects to find some sort of expression that produces the value for the badList variable,
but instead it finds nothing.

Java ldentifiers

An identifier is the name you give to an item in Java: a class, variable, method, and

so forth. Identifiers must respect a few rules to allow the code to compile and also
common-sense programming rules, called Java coding conventions. A few of them are
listed below:

o an identifier cannot be one of the Java reserved words, or the code
will not compile

o anidentifier cannot be a boolean literal (true, false)orthe null
literal , or the code will not compile

o anidentifier can be made of letters, numbers and any of , $

o developers should declare their identifiers following the Camel case
writing style, the practice of writing compound words or phrases such
that each word or abbreviation in the middle of the phrase begins
with a capital letter, with no intervening spaces or punctuation,
making sure each word or abbreviation in the middle of the identifier
name begins with a capital letter (e.g., StringBuilder, isAdult)

A variable is a set of characters that can be associated with a value. It has a type. The
set of values that can be assigned to it are restricted to a certain interval group of values
or must follow a certain form defined by that type. For example, items declared in line 11
is a variable of type List.

In Java, there are three types of variables.

o fields are variables defined in class bodies, outside of method bodies
and that do not have the keyword static in front of them

o local variables are variables declared inside method bodies, they are
relevant only in that context

o static variables are variables declared inside class bodies with the
have the keyword static in front of them. If they are declared as
public they are accessible globally.

106

CHAPTER 4 JAVA SYNTAX

Java Comments

Java comments refer to pieces of explanatory text that are not part of the code executed
and are ignored by the compiler. There are three ways to add comments within the code
in Java, depending on the characters used to declare them.

o //isused for single line comments (line 10)

o /** .. */Javadoc comments, special comments that are exported
using special tools into the documentation of a project called Javadoc
API (lines 05 to 07)

e /* ... */used for multiline comments (lines 13 to 15)

Java Object Types

When introducing the Java building blocks in Chapter 3, only class was mentioned

to keep things simple. It was mentioned that there are other object types in Java. The

expression object type is not really accurate and in this section, things become clearer.
Classes are templates for creating objects. Creating an object based on a class

is called instantiation and the resulted object is referred to as an instance of that

class. Instances are called objects because by default any class written by a developer

implicitly extends class java.lang.0bject if no other superclass is declared. So, the

following class declaration

package com.apress.bgn.ch4.basic;

public class Sample {

}

is equivalent to

package com.apress.bgn.ch4.basic;

public class Sample extends Object {

}

Also, notice how importing the java.lang package is not necessary, because the
Object class is the root class of the Java hierarchy, all classes (including arrays) must
have access to extend it. And thus, the java.lang package is implicitly imported as well.

107

CHAPTER 4 JAVA SYNTAX

But aside from classes, there are other template types that can be used for creating
objects in Java. The following sections introduce them and explain what they are used
for. But let’s do so in context.

Let’s create a family of templates for defining humans. Most Java tutorials use
templates for vehicles or geometrical shapes. I want to model something that anybody
can easily understand and relate to. The purpose of the following sections is to develop
Java templates that model different types of people. The only Java template that I've
explained so far is the class, so let’s continue with that.

Classes

The operation through which instances are created is called instantiation. So, to

design a class that models a generic human, we should think about two things: human
characteristics and human actions. So, what do all humans have in common? Well, a lot,
but for the purpose of this section, let’s choose three generic attributes: a name, age, and
height. These attributes map in a Java class to variables called fields or properties.

Fields

So, our class looks like this (initially):
package com.apress.bgn.ch4.basic;

public class Human {
String name;

int age;

float height;

In the code sample, the fields have different types, depending on which values
should be associated with them. For example, name can be associated with a text value,
like "John", and text is represented in Java by the String type. The age can be associated
with numeric integer values, so is of type int. And for the purpose of this section, we've
considered that the height of a person is a rational number like 1.9, so we used the
special Java type for this kind of value: float.

108

CHAPTER 4 JAVA SYNTAX

So, now we have a class modelling some basic attributes of a human. How do we
use it? We need a main() method and we need to instantiate the class. In the next code
snippet, a human named John is created.

package com.apress.bgn.ch4.basic;
public class BasicHumanDemo {

public static void main(String... args) {
Human human = new Human();
human.name = "John";

human.age = 40;
human.height = 1.91f;

To create a Human instance, we use the new keyword. Next, we call a special method
called a constructor. I've covered methods before, but this one is special. (Some
programmers do not even consider it a method.) The most obvious reason for that is
it wasn’t defined anywhere in the body of the Human class. So, where is it coming from?
Well, it’s a default constructor that is automatically generated by the compiler unless an
explicit one is declared. A class cannot exist without a constructor; otherwise, it cannot
be instantiated. That is why the compiler generates one if none was explicitly declared.
The default constructor, calls super () that invokes the Object no argument constructor
that initializes all fields with default values. This can be tested by the following example.

package com.apress.bgn.ch4.basic;
public class BasicHumanDemo {

public static void main(String... args) {
Human human = new Human();
System.out.println("name: "
System.out.println("age:

System.out.println("height:

+ human.name);

+ human.age);

+ human.height);

109

CHAPTER 4 JAVA SYNTAX

What do you think will happen when you run the previous code? If you think that
some default values (neutral) printed, you are absolutely right. The following is the
output of the previous code.

name: null
age: 0
height: 0.0

The numeric variables were initialized with 0, and the String value was initialized
with null. The reason for that is that the numeric types are primitive data types and
String is an object data type. The String class is part of the java.lang package, which is
one of the predefined Java classes that creates objects of type String. Itis a special data
type that represents text objects. We'll go deeper into data types in the following chapter.

Class Variables

Aside attributes that are specific to each human in particular, all humans have
something in common: a lifespan, which is assumed to be 100 years. It would be
redundant to declare a field called lifespan, because it has to be associated with the same
value for all human instances. So, we declare a field using the static keyword in the
Human class, which has the same value for all Human instances and that is initialized only
once. And we can go one step further and make sure that value never changes during the
execution of the program by adding the final modifier in front of its declaration as well.
This way we created a special type of variable called a constant. The new Human class
looks like this:

package com.apress.bgn.ch4.basic;

public class Human {
static final int LIFESPAN = 100;

String name;
int age;

float height;

110

CHAPTER 4 JAVA SYNTAX

The LIFESPAN variable is also called a class variable, because it is not associated
with instances but with the class. This is clear in the following example.

package com.apress.bgn.ch4.basic;
public class BasicHumanDemo {

public static void main(String... args) {
Human john = new Human();
john.name = "John";

Human jane = new Human();
jane.name = "Jane";

System.out.println("John’s lifespan = " + john.LIFESPAN);

System.out.println("Jane’s lifespan = " + jane.LIFESPAN);

System.out.println("Human lifespan = " + Human.LIFESPAN);

When the main() method of the preceding class is executed, the following is printed,
which proves everything that was mentioned before.

100
100
Human lifespan = 100

John's lifespan
Jane's lifespan

Encapsulating Data

The class we defined makes no use of access modifiers on the fields, which is not
acceptable. Java is known as an object-oriented programming language (OOP), and
thus, code written in Java must respect the principles of OOP. Respecting these coding
principles ensures that the written code is of good quality and totally aligns with the
fundamental Java style. One of the OOP principles is encapsulation. The encapsulation
principle refers to hiding of data implementation by restricting access to it using special
methods called accessors (getters) and mutators (setters).

111

CHAPTER 4 JAVA SYNTAX

Basically, any field of a class should have private access, and access to it should be
controlled by methods that can be intercepted, tested, and tracked to see where they were
called. Getters and setters are a normal practice to have when working so objects that most
IDEs have a default options to generate them, including Intelli] IDEA. Right-click inside
the class body and select the Generate option to see all possibilities and select Getters and
Setters to generate the methods for you. The menu is depicted in Figure 4-3.

After making the fields private, and generating the getters and setter the Human class
now looks like this:

package com.apress.bgn.ch4.basic;

public class Human {
static final int LIFESPAN = 100;

private String name;
private int age;
private float height;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public int getAge() {
return age;

}

public void setAge(int age) {
this.age = age;

}

public float getHeight() {
return height;

112

CHAPTER 4 JAVA SYNTAX

public void setHeight(float height) {
this.height = height;

[}
L

€ Human.java €" BasicHumanDemo java =] Main.java eSamp!e.ja‘aa -

package com.apress.bgn.chd.basic;

alpess (sy

s
)| 4 * @author iuliana.cosmina

* @date 11/04/2018 m
* @since 1.0 g
*/ g
public cla Copy Reference X{%C o ‘
static -3
E Paste By 3
String Paste from History... O RBY
: Paste Simple TORY
int ag)
Column Selection Mode {38 Generate
float Constructor
> Refactor > .
Folding » Setter
Analyze > Getter and Setter

equals() and hashCode()
toString()

Override Methods... ~O
Delegate Methods...
Recompile '‘Human.java' O 8F9 Copyright

Go To

Figure 4-3. Intelli] IDEA code generation menu. Generate... » Getter and Setter
submenu

So, you may be wondering what this is. As the word says, it is a reference to the
current object. So, this.name is the value of the field name of the current object. Inside
the class body, this accesses fields for the current object, when there are parameters
in methods that have the same name. And as you can see, the setters and getters that
Intelli] IDEA generates have parameters that are named the same as the fields.

Getters are the simplest methods declared without any parameter. They return the
value of the field they are associated with. Their naming convention uses the get prefix
and the name of the field they access, with the first letter uppercased.

113

CHAPTER 4 JAVA SYNTAX

Setters are methods that return nothing. They declare as a parameter a variable with
the same type that needs to be associated to the field. Their names are made of the set
prefix and the name of the field they access, with its first letter uppercased. Figure 4-4
depicts the setter and getter for the name field.

8 public class Human {
9 static final int LIFESPAN = 100;
10

11 private String Géme-;>

12

13 private int age;

14

15 private float height;

16

17 public String ge Na@gx) {
18 return name;

19 }

20 -

21 public void se‘@an@(String name) {
22 this.name = name;

23 }

24

Figure 4-4. Setter and getter methods used for the name field

This means that when instantiating the Human class, we have to use the setters
to set the field values and the getters to access those values. Thus, our class
BasicHumanDemo becomes

package com.apress.bgn.ch4.basic;
public class BasicHumanDemo {

public static void main(String... args) {
Human human = new Human();
human.setName("John");
human.setAge(40);
human.setHeight(1.91f);

System.out.println("name: " + human.getName());
System.out.println("age: " + human.getAge());

System.out.println("height: " + human.getHeight());

114

CHAPTER 4 JAVA SYNTAX

Methods

Since getters and setters are methods it is time to start the discussions about methods too.
A method is a block of code characterized by returned type, name, and parameters that
describes an action done by or on the object that makes use of the values of its fields and/
or arguments provided. An abstract template of a Java method is depicted as follows.

[accessor] [returned type] [name] typel parami, type2 param2, ... {
// code
[[maybe] return val]

}

Let’s create a method for the Human class that computes and prints how much time a
human still has to live by making use of his age and the LIFESPAN constant. Because the
method does not return anything, the return type used is void, a special type that tells
the compiler that the method does not return anything and we have no return statement
in the method body.

package com.apress.bgn.ch4.basic;

public class Human {
static final int LIFESPAN = 100;

private String name;

private int age;

private float height;

/**

* compute and prints time to live

*/

public void computeAndPrintTtl(){
int ttl = LIFESPAN - this.age;
System.out.println("Time to live: " + ttl);

115

CHAPTER 4 JAVA SYNTAX

I There is a Java coding convention in the naming of constants that recommends
using only uppercase letters, underscores, and numbers.

The preceding method definition does not declare any parameters, so considering
we have a Human instance we can call the method like this:

Human human = new Human();
human.setName("John");
human.setAge(40);
human.setHeight(1.91f);
human.computeAndPrintTtl();

And we expect it to print Time to live: 60, which actually happened. Now, let’s
modify the method to return the value instead of printing it.

package com.apress.bgn.ch4.basic;

public class Human {
static final int LIFESPAN = 100;

private String name;

private int age;

private float height;

/x*

* @return time to live

*/

public int getTimeTolLive(){
int ttl = LIFESPAN - this.age;
return ttl;

116

CHAPTER 4 JAVA SYNTAX

Calling the method do nothing in this case, we have to modify the code to save the
returned value and print it.

Human human = new Human();
human.setName("John");
human.setAge(40);
human.setHeight(1.91f);

int timeTolive = getTimeTolLive();
System.out.println("Time to live:

+ timeTolLive);

Both methods introduced here declare no parameters, so they are called without
providing any arguments. We won’t cover methods with parameters, as the setters are
more than obvious. Let’s skip ahead.

Constructors

Now we’ve done it. We can no longer use human.name without the compiler complaining
about it. But still, it is annoying to call all of those setters to set the properties; something
should be done about that. Remember the implicit constructor? Well, let’s create an
explicit one that has parameters for each of the fields we are interested in.

public class Human {
static final int LIFESPAN = 100;

private String name;
private int age;
private float height;

public Human(String name, int age, float height) {
this.name = name;
this.age = age;
this.height = height;

117

CHAPTER 4 JAVA SYNTAX

In the preceding example, you can see that the constructor does not include
a return statement, even if the result of calling a constructor is the creation of an
object. Constructors are different from methods in that way. By declaring an explicit
constructor, the default constructor is no longer generated. So, creating a Human instance
by calling the default constructor does not work anymore; the code no longer compiles
because the default constructor is no longer generated.

Human human = new Human();

To create a Human instance, we now have to call the new constructor and provide
proper arguments in place of the parameters, having the same types as declared.

Human human = new Human("John", 40, 1.91f);

But what if we do not want to be forced to set all fields using this constructor? It’s
simple, we define another with only the parameters that we are interested in. Let’s define
a constructor that only sets the name and the age for a Human instance.

public class Human {
static final int LIFESPAN = 100;

private String name;
private int age;
private float height;

public Human(String name, int age) {
this.name = name;
this.age = age;

}

public Human(String name, int age, float height) {
this.name = name;
this.age = age;
this.height = height;

118

CHAPTER 4 JAVA SYNTAX

And this is where we stumble upon an OOP principle called polymorphism. The
term is Greek and translates to one name, many forms. Polymorphism manifests itself
by having multiple methods all with the same name, but slightly different functionality.
There are two basic types of polymorphism: overriding, also called run-time
polymorphism, and overloading, which is referred to as compile-time polymorphism.
The second type of polymorphism applies to the preceding constructors, because we
have two of them, one with a different set of parameters that looks like it is an extension
of the simpler one.

So, we have some code duplication in the previous example, and there is a common
sense programming principle called DRY' (Don’t Repeat Yourself!) that the following
example clearly defies. So, let’s fix that by using the this keyword.

public class Human {
static final int LIFESPAN = 100;

private String name;
private int age;
private float height;

public Human(String name, int age) {
this.name = name;
this.age = age;

}

public Human(String name, int age, float height) {
this(name, age);
this.height = height;

Yes, constructors can call each other by using this(...). So now, we can use both
constructors to create Human instances. If we use the one that does not set the height, the
height field is implicitly initialized with the default value for type float.

'Also one of the clean coding principles; read more about it at https://blog.goyello.
com/2013/01/21/ top-9-principles-clean-code/

119

https://blog.goyello.com/2013/01/21/top-9-principles-clean-code/
https://blog.goyello.com/2013/01/21/top-9-principles-clean-code/
https://blog.goyello.com/2013/01/21/top-9-principles-clean-code/

CHAPTER 4 JAVA SYNTAX

Now, our class is generic; we could even say that it models a Human class in an
abstract way. If we were to try to model humans with certain skill sets or abilities, we
must enrich this class. Let’s say we want to model musicians and actors. This means we
need to create two new classes. The Musician class is depicted in the following; getters
and setters for the fields are skipped.

public class Musician {
static final int LIFESPAN = 100;

private String name;
private int age;

private float height;
private String musicSchool;
private String genre;

private List<String> songs;

}

The Actor class is depicted next; getters and setters for the fields are also skipped.

public class Actor {
static final int LIFESPAN = 100;

private String name;

private int age;

private float height;

private String actingSchool;

private List<String> films;

There are more than a few common elements between the two classes. One of the
clean coding principles requires developers to avoid code redundancy. This can be done
by designing the classes by following two OOP principles: inheritance and abstraction.

120

CHAPTER 4 JAVA SYNTAX

Abstraction

Abstraction is an OOP principle that manages complexity. Abstraction decomposes
complex implementations and defines core parts that can be reused. In our case, common
fields of the Musician and Actor classes can be grouped in the Human class that we defined
earlier in the chapter. The Human class can be viewed as an abstraction, because any human
in this world is more than his name, age, and height. So, there is no need to create Human
instances, because a human is represented by something else, like passion, purpose, and
skill. A class that does not need to be instantiated, but groups together fields and methods
for other classes to inherit, or provide a concrete implementation for is modelled in Java by
an abstract class. Thus, we modify the Human class to make it abstract first. And since we
are abstracting this class, let’s make the LIFESPAN constant public so we can access it from
anywhere and make the getTimeTolLive method abstract.

package com.apress.bgn.ch4.basic;

public abstract class Human {
public static final int LIFESPAN = 100;

private String name;
private int age;
private float height;

public Human(String name, int age) {
this.name = name;
this.age = age;

}

public Human(String name, int age, float height) {
this(name, age);
this.height = height;

}

/**

* @return time to live

*/

public abstract int getTimeTolive();

// setters & getters for fields in this class

}

121

CHAPTER 4 JAVA SYNTAX

An abstract method like getTimeToLive() is declared in the example; it is a
method missing the body. This means that within the Human class, there is no concrete
implementation for this method, only a skeleton—a template that extending classes
must provide a concrete implementation for.

Oh, but wait, we kept the constructors! Why did we do that if we are not allowed to
use them anymore? And we aren’t, because Figure 4-5 shows what Intelli] IDEA does
with the BasicHumanDemo class Figure 4-5.

¢’ BasicHumanDemo.java
package com.apress.bgn.chd.basic;
« @author iuliana.cosmina
x @date 21/04/2018
* @since 1.0
%/

b public class BasicHumanDemo {

3 public static void main(String... args) {
Human human = pew_Human(name: “John", age: 4@, height: 1,91f);

Syst/ 'Human'is abstract; cannot be instantiated));

System.out.printin{"age: ™ + human.getAge());
System.out.println("height: " + human.getHeight());

Figure 4-5. Java compiler error when trying to instantiate an abstract class

We kept the constructors because they can help further abstracting behavior. The
Musician and Actor classes must be rewritten to extend the Human class. This is done
by using the extends keyword when declaring the class and specifying the class to be
extended, also called the parent class or superclass. The resulting class is called a
subclass. When extending a non-abstract class, the subclass inherits all the fields and
concrete methods declared in the superclass.

When extending an abstract class, the subclass must provide a concrete
implementation for all abstract methods, and must declare their own constructors,
which eventually make use of the constructors declared in the abstract class. These
constructors can be called by using the keyword super. The same goes for methods, but
not for fields, unless they have the proper access modifier.

122

CHAPTER 4 JAVA SYNTAX

Let’s see what the Musician class looks like when making use of abstraction and
inheritance.

package com.apress.bgn.ch4.basic;
import java.util.Llist;
public class Musician extends Human {
private String musicSchool;
private String genre;
private List<String> songs;

public Musician(String name, int age, float height,
String musicSchool, String genre) {
super(name, age, height);
this.musicSchool = musicSchool;

this.genre = genre;

}

public int getTimeTolLive() {
return (LIFESPAN - getAge()) / 2;

// setters & getters for fields in this class

}

The songs field was not used as a parameter in the constructor for simplicity reasons
here.

The Musician constructor calls the constructor in the superclass to set the properties
defined there. Also, notice the full implementation provided for the getTimeToLive()
method.

The Actor class is rewritten in a similar manner. You find a proposal implementation
in the sources for the book, but try to write your own before looking in the com.apress.
bgn.ch4.basic package.

Figure 4-6 shows the Human class hierarchy, as generated by Intelli] IDEA.

123

CHAPTER 4 JAVA SYNTAX

€ Human

f age int
¥ = LIFESPAN int
f ¥ name String
f height float
m & getTimeToLive() int
m = Human(String, int, float)

m = Human(String, int)

H

€ Musician € Actor

fi & genre String f & films List<String>
f & musicSchool String f & actingSchool String
f) & songs List<String> m = setActingSchool(String) void
m setMusicSchool(String) void P addFilm(String) void
m = getTimeTolive() int m = getActingSchool() String
m = setGenre(String) void m = Actor(String, int, float, String)

m = addSong(String) void m = getTimeToLive() int
m = getGenre() String m = getFilms() List<String>
m = getMusicSchool() String m - setFilms(List<String>) void
m = getSongs() List<String>

m = setSongs(List<String>) void

m = Musician(String, int, float, String, String)

Figure 4-6. UML diagram generated by Intelli] IDEA

The UML diagram clearly shows the members of each class and the arrows point
to the superclass. UML diagrams are useful tools in designing class hierarchies and
defining logic of applications. If you want to read more about them and the many types
of UML diagrams that there are, you can do so at www.uml-diagrams.org.

After covering so much about classes and how to create objects, we need to cover
other Java important components that create even more detailed objects, which can then
be used to implement more complex applications. Our Human class is missing quite a few
attributes, like gender for example. A field that models the gender of a person can only
have values from a fixed set of values. It used to be two, but because we are living in a brave
new world that is fond of political correctness, we cannot limit the set of values for genders
to two; so we introduce a third, called UNDEFINED. This means that we must introduce a

124

http://www.uml-diagrams.org

CHAPTER 4 JAVA SYNTAX

new class to represent a gender that is limited to being instantiated three times. This would
be tricky to do with a typical class. So, in Java version 1.5, enums were introduced.

Enums

The enum type is a special class type. It defines a special type of class that can only be
instantiated a fixed number of times. An enum declaration, groups all instances of that
enum. All of them are constants. So, the Gender enum can be defined as shown in the
following piece of code.

package com.apress.bgn.ch4.basic;

public enum Gender {
FEMALE,
MALE,
UNDEFINED

An enum cannot be instantiated externally. An enum is by default final, thus it cannot
be extended. Remember how by default every class in Java implicitly extends class
Object? Every enum in Java implicitly extends class java.lang.Enum<E> and in doing so,
every enum instance inherits special methods that are useful when handling enums.

As an enum is a special type of class, it can have fields and a constructor that can
only be private, as enum instances cannot be created externally. The private modifier is
not needed explicitly, as the compiler knows what to do. Let’s modify our Gender enum
to add an integer field that is the numerical representation of each gender and a String
field that is the text representation.

package com.apress.bgn.ch4.basic;

public enum Gender {
FEMALE(1, "f"),
MALE(2, "m") ,
UNDEFINED(3, "u");

private int repr;
private String descr;

125

CHAPTER 4 JAVA SYNTAX

Gender(int repr, String descr) {
this.repr = repr;
this.descr = descr;

}

public int getRepr() {
return repr;

}

public String getDescr() {
return descr;

But wait, what would stop us from declaring setters and modifying the field values?
Well, nothing. If that is what you need to do you can do it. But this is not a good practice.
Enum instances, should be constant. So, what we can do is to not create setters, and make
sure the values of the fields never change by declaring them final. When we do so, the
only way the fields can be initialized is by calling the constructor, and since the constructor
cannot be called externally, the integrity of our data is ensured. So, our enum becomes

package com.apress.bgn.ch4.basic;

public enum Gender {
FEMALE(1, "f"),
MALE(2, "m") ,
UNDEFINED(3, "u");

private final int repr;
private final String descr;

Gender(int repr, String descr) {
this.repr = repr;
this.descr = descr;

}

public int getRepr() {
return repr;

126

CHAPTER 4 JAVA SYNTAX

public String getDescr() {
return descr;

Methods can be added to enums, and each instance can override them. So, if we add
amethod called getComment () to the Gender enum, every instance inherits it. But the
instance can override it. Let’s see what that looks like.

package com.apress.bgn.ch4.basic;

public enum Gender {
FEMALE(1, "f"),
MALE(2, "m") ,
UNDEFINED(3, "u"){
@0verride
public String comment() {
return "to be decided later:

+ getRepr() + ", " + getDescr();

};

private final int repr;
private final String descr;

Gender(int repr, String descr) {
this.repr = repr;
this.descr = descr;

}

public int getRepr() {
return repr;

}

public String getDescr() {
return descr;

}

public String comment() {

return repr + + descr;

127

CHAPTER 4 JAVA SYNTAX

If we were to print the values returned by the comment () method for each instance,
we would see the following.

package com.apress.bgn.ch4.basic;

public class Sample extends Object {
public static void main(String... args) {

System.out.println(Gender.FEMALE.comment());
// prints '1: f'
System.out.println(Gender.MALE.comment());
// prints '2: m'
System.out.println(Gender.UNDEFINED.comment());
//prints 'to be decided later: 3, u'

We're going to be playing with enums in future examples as well. Just remember that
whenever you need to limit the implementation of a class to a fixed number of instances,
enums are the tools for you. And now because we introduced enums, our Human class can
also have a field of type Gender.

package com.apress.bgn.ch4.basic;

public abstract class Human {
public static final int LIFESPAN = 100;

protected String name;
protected int age;
protected float height;

private Gender gender;

public Human(String name, int age, Gender gender) {
this.name = name;
this.age = age;
this.gender = gender;

128

CHAPTER 4 JAVA SYNTAX

public Human(String name, int age, float height, Gender gender) {
this(name, age, gender);
this.height = height;

In previous sections, interfaces were mentioned as one of the Java tools used to
create objects. It is high time I expand the subject.

Interfaces

One of the most common Java interview questions is, “What is the difference between
an interface and an abstract class?” This section provides you the most detailed answer
to that question. An interface is not a class, but it does help create classes. An interface
is fully abstract; it has no fields, only method definitions (skeletons). A class can
implement an interface, and unless the class is abstract, it is forced to provide concrete
implementations for them. Each method declared inside an interface is implicitly public
and abstract, because methods need to be abstract to force implementing classes to
provide implementations and are public, so classes have access to do so.

The only methods with concrete bodies in an interface are static methods and
starting with Java 8, default methods. The interfaces cannot be instantiated, they do not
have constructors.

Interfaces that declare no method definitions are called marker interfaces and have
the purpose to mark classes for specific purposes. The most renowned Java marker
interface is java.io.Serializable, which marks objects that can be serialized(their
state can be saved to a binary file).

An interface can be declared in its own file as a top-level component, or nested inside
another component. There are two types of interfaces: normal interfaces and annotations.

The difference between abstract classes and interfaces, and when one or the other
should be used, becomes relevant in the context of inheritance. Java supports only
single inheritance. This means a class can only have one superclass. This might seem
like a limitation, but let’s consider a simple example. Let’s modify the previous hierarchy
and imagine a class called Performer that should extend the Musician and Actor classes.
If you need a real human that can be modelled by this class, think of David Duchovny, an
actor who recently got into music.

129

CHAPTER 4 JAVA SYNTAX

Figure 4-7 shows the class hierarchy.

Human
| Musician | | Actor |
| Performer :I

Figure 4-7. Diamond class hierarchy

The hierarchy in Figure 4-7 introduces something called the diamond problem, and
the name is inspired by the shape formed by the relationships between classes. What is
actually wrong with the design? If both Musician and Actor extend Human, and inherit
all members from it, which member does Performer inherit and from where? Because it
cannot inherit members of the Human class twice - this would make this class useless and
invalid. So, what is the solution? As you probably imagine, given the title of this section:
interfaces.

What has to be done is to turn methods in classes Musician and Actor into method
skeletons and transform those classes into interfaces. The behavior from the Musicianis
moved to a class called, let’s say Guitarist, which extends the Human class and implement
the Musician interface. For the Actor class, something similar can be done, but I'll leave
that as an exercise for you. Some help is provided by the hierarchy shown in Figure 4-8.

Human
<<interface>> | <<interface>>
| Musician | ' Actor
: e ~~zemm-men-
| Performer |

Figure 4-8. Java hierarchy with interfaces for Performer class

The Musician interface contains only method templates mapping what a musician
does. It does not go into detail to model how. The same goes for the Actor interface. In
the following code snippet, you can see the bodies of the two interfaces.

// Musician.java
package com.apress.bgn.ch4.hierarchy;

import java.util.Llist;

130

CHAPTER 4

public interface Musician {

}

String getMusicSchool();

void setMusicSchool(String musicSchool);
List<String> getSongs();

void setSongs(List<String> songs);
String getGenre();

void setGenre(String genre);

// Actor

package com.apress.bgn.ch4.hierarchy;

import java.util.Llist;

public interface Actor {

String getActingSchool();

void setActingSchool(String actingSchool);
List<String> getFilms();

void setFilms(List<String> films);

void addFilm(String filmName);

JAVA SYNTAX

The fields have been removed because they cannot be part of the interfaces; all that is

left are the method templates. The Performer class is depicted in the next code snippet.

package com.apress.bgn.ch4.hierarchy;

import java.util.list;

public class Performer extends Human

implements Musician, Actor {

private String musicSchool;
private String genre;
private List<String> songs;
private String actingSchool;

private List<String> films;

131

CHAPTER 4 JAVA SYNTAX

public Performer(String name, int age, float height, Gender gender) {
super(name, age, height, gender);

}

@verride
public int getTimeToLive() {
return (LIFESPAN - getAge()) / 2;

}

public String getMusicSchool() {
return musicSchool;

}

public void setMusicSchool(String musicSchool) {
this.musicSchool = musicSchool;

}

public List<String> getSongs() {
return songs;

}

public void setSongs(List<String> songs) {
this.songs = songs;

}

public void addSong(String song) {
this.songs.add(song);

}

public String getGenre() {
return genre;

}

public void setGenre(String genre) {
this.genre = genre;

}

public String getActingSchool() {
return actingSchool;

132

CHAPTER 4 JAVA SYNTAX

public void setActingSchool(String actingSchool) {
this.actingSchool = actingSchool;

}

public List<String> getFilms() {
return films;

}

public void setFilms(List<String> films) {
this.films = films;

}

public void addFilm(String filmName) {
this.films.add(filmName);

What you are left with from this example is that using interfaces multiple
inheritance is possible in Java, and that classes extend classes and implement interfaces.
But inheritance applies to interfaces too. For example, both Musician and Actor
interface can extend an interface named Artist that contains template for behavior
common to both. For example, we can combine the music school and acting school
into a generic school and define the setters and getters for it as method templates. The
Artist interface is depicted as follows with Musician.

// Artist.java
package com.apress.bgn.ch4.hierarchy;

public interface Artist {
String getSchool();
void setSchool(String chool);

}

// Musician.java
package com.apress.bgn.ch4.hierarchy;

import java.util.list;

133

CHAPTER 4 JAVA SYNTAX

public interface Musician extends Artist {

List<String> getSongs();

void setSongs(List<String> songs);

String getGenre();
void setGenre(String genre);

Hopefully, you understood the idea of multiple inheritance, when it is appropriate

to use classes, and when to use interfaces in designing your applications. It is time to

fulfill the promise made in the beginning of this section and list the differences between

abstract classes and interfaces. You can find them in Table 4-1.

Table 4-1. Differences Between Abstract Classes and Interfaces in Java

Abstract Class

Interface

Can have non-abstract methods

Single inheritance: a class can only extend one
class

Can have final, non-final, static and non-static
variables

Declared with abstract class

Can extend another class using keyword
extends and implement interfaces with keyword
implements

Can have non-abstract, protected or private
members

If a class has an abstract method, it must be
declared itself abstract

Can only have abstract and (since Java 8
default methods, since Java 9 private methods)

Multiple inheritance: a class can implement
more than one interface.

Can only have static and final fields.

Declared with interface.

Can only extend other interfaces (one or more)
using key-word extends.

All members are method definitions and are
by default abstract and public. (Except default
methods, starting with Java 8 and private
methods, starting with Java 9.)

(No correspondence)

134

CHAPTER 4 JAVA SYNTAX

Default Methods

One problem with interfaces is that if you modity their bodies to add new methods, most
likely, the code stops compiling because the classes implementing the interfaces do not
provide concrete implementations for the new methods declared in the interfaces. Sure,
a solution would be to declare the new methods in a new interface and then creating
new classes that implement both new and old interfaces.

The methods interfaces expose make up an API (application programming
interface) and when developing applications, the aim is to design applications and their
components to have a stable API. This rule is described in the open closed principle,
which is one of the five SOLID programming principles.? This principle states that you
should be able to extend a class without modifying it. Thus, modifying the interface a
class implements, extends the class behavior, but only if the class is modified to provide
a concrete implementation for the new methods. So, implementing interfaces, tends to
lead to breaking this principle. So, how can we avoid this in Java?

In Java 8, a solution for this was finally introduced: default methods. Starting with
Java 8, methods with a full implementation can be declared in interfaces as long as they
are declared using the default keyword.

Let’s consider the previous example: the Artist interface. Any artist should be able
to create something, right? So, he or she should have a creative nature. Given the world
we are living in, I won’t mention names, but some of our artists are actually products of
the industry, so they are not creative themselves. So, the realization that we should have
a method that tells us if an artist has a creative nature or not, came way after we decided
our hierarchy, which is depicted in Figure 4-9.

|. Human

| <<interface>> !
© Adist |

-——zwy;

| <<interface>>
Musician
E el R ;

| <<interface>>
Actor

..... st

|' Bariormer |

Figure 4-9. Java hierarchy with more interfaces for Performer class

A good article is at https://hackernoon.com/solid-principles-made-easy-67b1246bcdf

135

https://hackernoon.com/solid-principles-made-easy-67b1246bcdf

CHAPTER 4 JAVA SYNTAX

If we add a new method template to the Artist interface, the Performer class causes

a compile error. Intelli] IDEA makes it clear that our application does not work anymore

by showing a lot of things in red, as depicted in Figure 4-10.

i B Project ~ 0 = @ hierarchy/BasicHumanDemo.java) Musician java © Performer.java
'-§ % chapter00 package com.apress.bgn.chd.hierarchy;
= 2
s a chapter01 3 import java.util.List;
& chapter03 4
§ v Iy chapter04. public class Performer extends Human implements Musician, Actor {
il o
@ o build 7 private String genre;
out g
src 9 private List<String> songs;
& main, private String school;
java 12
v 3 com.apress.bgn.ch4 13 private List<String> films;
” h?s'c 5 public Performer(String name, int age, float height, Gender gender.
hierarchy 18
i Actor public int getTimeToLive() { return (LIFESPAN - gethge()) / 2; }
L Artist
& BasicHumanDemo public List<String> getSongs() { return songs; }
E Gender % % .
g Human public void setSongs{List<String> songs) { this.songs = songs; }
1 Musician public void addSong(String song) { this,songs.add(song); }
€ Performer
I:’Sam;-lén " public String getGenre() { return genre; }

& FirstSample
module-info.java
(& chapter04.gradle
& chapter05

akamta e

public void setGenre(String genre} { this.genre = genre; }

public String getSchool{) { return school; }

Figure 4-10. Java broken hierarchy

The compiler errors that we see are caused by our decision to add a new method,
named isCreative, to the Artist interface. It is underlined in the following code
snippet.

package com.apress.bgn.ch4.hierarchy;

public interface Artist {
String getSchool();

void setSchool(String school);

boolean isCreative();

136

CHAPTER 4 JAVA SYNTAX

To get rid of the compiling errors we’ll transform the isCreative method into a
default method that returns true, because every artist should be creative.

package com.apress.bgn.ch4.hierarchy;

public interface Artist {
String getSchool();

void setSchool(String school);

default boolean isCreative(){

return true;

}

Now, the code should compile again. If we need to add more than one default
method to an interface and the methods have some implementation in common, that
code can be isolated starting with Java 9 into a private method that can be called from
the default methods. So basically, starting from Java 9, full blown methods can be part of
an interface, as long as they are declared private.

Annotation Types

An annotation is defined in a similar way to an interface; the difference is that the
interface keyword is preceded by the at sign (@). Annotation types are a form of
interfaces, and most times, they are used as markers. For example, you've probably
noticed the @0verride annotation. This annotation is automatically placed by intelligent
IDEs when classes extending or implementing interfaces are generated automatically.
It’s declaration in the JDK is depicted in the following code snippet.

package java.lang;
import java.lang.annotation.*;

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.SOURCE)
public @interface Override {}

Annotations that do not declare any property are called marker or informative
annotations. They are needed only to inform other classes in the application, or

137

CHAPTER 4 JAVA SYNTAX

developers of the purpose of the components they are placed on. They are not
mandatory and the code compiles without them.

In Java 8, an annotation named @FunctionalInterface was introduced. This
annotation was placed on all Java interfaces that can be used in lambda expressions.

package java.lang;

import java.lang.annotation.*;
@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)

public @interface FunctionalInterface {}

Lambda expressions were also introduced in Java 8 and they represent a compact and
practical way of writing code that was borrowed from languages like Groovy and Ruby.

Functional Interfaces are interfaces that declare a single abstract method. Because
of this, the implementation of that method can be provided on the spot, without the
need to create a class to define a concrete implementation.

Let’s imagine the following scenario: we create an interface named Operation that
contains a single method.

package com.apress.bgn.ch4.lambda;

@FunctionallInterface

public interface Operation {
float execute(int a, int b);

We'll next create a class named Addition.
package com.apress.bgn.ch4.lambda;
public class Addition implements Operation {

@Override
public float execute(int a, int b) {
return a + b;

138

CHAPTER 4 JAVA SYNTAX
And if we want to test it, we need yet another class.
package com.apress.bgn.ch4.lambda;

public class OperationDemo {
public static void main(String... args) {
Addition addition = new Addition();
float result = addition.execute(2,5);

System.out.println("Result is " + result);

Using lambda, the Addition class is no longer needed, and the instantiation and the
method call can be replaced with

package com.apress.bgn.ch4.lambda;

public class OperationDemo {
public static void main(String... args) {
Operation addition2 = (a, b) -> a + b;
float result2 = addition2.execute(2, 5);
System.out.println("Lambda Result is " + result2);

Lambda expressions can be used for a lot of things. I'll cover them throughout the
book, whenever code can be written in a more practical way using them.

Exceptions

Exceptions are special Java classes that are used to intercept special unexpected
situations during the execution of a program so that the developer can implement the
proper course of action. These classes are organized in a hierarchy that is depicted in
Figure 4-11.

139

CHAPTER 4 JAVA SYNTAX

— Throwable)-*—
e
| Error Exception]

| RuntimeException |

Figure 4-11. Java Exception hierarchy

Throwable is the superclass of all errors that can be thrown in a Java application. The
exceptional situations can be caused by hardware failures (e.g., trying to read a protected
file), by missing resources (e.g., trying to read a file that does not exist), or by bad code.
Bad developers tend to do this: when in doubt, catch a throwable. You should definitely
try to avoid this because the Error class that notifies the developer about a situation
that the system cannot recover from is a subclass of it. Let’s start with a simple example.
We define a method that calls itself (its technical name is recursive), but we’ll design it
badly to call itself forever and cause the JVM to run out of memory.

package com.apress.bgn.ch4.ex;
public class ExceptionsDemo {

// bad method
static int rec(int i){
return rec(i*i);

}
public static void main(String... args) {
rec(1000);
System.out.println("An error happened.");
}

If we run the class, An error happened is not printed. Instead, the program ends
abnormally by throwing a StackOverFlowError and states the line where the problem is
(in our case, the line where the recursive method calls itself).

140

CHAPTER 4 JAVA SYNTAX

Exception in thread "main" java.lang.StackOverflowError
at chapter.four/com.apress.bgn.ch4.ex.ExceptionsDemo.
recExceptionsDemo.java:7
at chapter.four/com.apress.bgn.ch4.ex.ExceptionsDemo.
recExceptionsDemo.java:7

StackOverFlowError is a subclass of Exror, and is caused by the defective recursive
method that was called. Sure, we could modify the code, treat this exceptional situation,
and execute whatever has to be executed next.

package com.apress.bgn.ch4.ex;

public class ExceptionsDemo {

public static void main(String... args) {
try {
rec(1000);
} catch (Throwable r) {
}

System.out.println("An error happened.");

In the console, you see only the An error happened text, but no trace of the error,
which is why we caught it and decided not to print any information about it. This is also
a bad practice called exception swallowing, never do this! Also, the system should not
recover from this, as the result of any operation after an error is thrown is unreliable.
That is why, as a rule of thumb, never catch a throwable!!

The Exception class is the superclass of all exceptions that can be caught and
treated, and the system can recover from them. The RuntimeException class is the
superclass of exceptions that are thrown during the execution of the program, so the
possibility of them being thrown is not known when the code is written. Let’s consider
the following code sample.

141

CHAPTER 4 JAVA SYNTAX

package com.apress.bgn.ch4.ex;
import com.apress.bgn.ch4.hierarchy.Performer;
public class ExceptionsDemo {

public static void main(String... args) {
Performer p = PerformerGenerator.get("John");

System.out.println("TTL: " + p.getTimeTolive());

Let’s suppose we do not have access to the code of the PerformerGenerator class.
We know that if we call the get(..) method with a name, it returns a Performer
instance. So, we write the preceding code and try to print the performer time to live.
What happens if the performer is not initialized with a proper object, because the
get("John") method call returns null? The outcome is depicted in the next code snippet.

Exception in thread "main" java.lang.NullPointerException
at chapter.four/com.apress.bgn.ch4.ex.ExceptionsDemo.
mainExceptionsDemo.java:10

But if we are smart developers, or a little paranoid, we can prepare for this case,
catch the exception and throw an appropriate message or perform there a dummy

initialization, in case the performer instance is used in some other way later in the code.
package com.apress.bgn.ch4.ex;

import com.apress.bgn.ch4.hierarchy.Performer;

public class ExceptionsDemo {

public static void main(String... args) {
Performer p = null;//PerformerGenerator.get("John");
try {
System.out.println("TTL: " + p.getTimeTolLive());
} catch (Exception e) {
System.out.println("The performer was not initialised properly
because of: " + e.getMessage());

142

CHAPTER 4 JAVA SYNTAX

The exception that was thrown is of type NullPointerException, a class that extends
RuntimeException, so atry/catch blockis not mandatory. This type of exceptions are
called unchecked exceptions, because the developer is not obligated to check for them.
The NullPointerException is the exception type Java beginner developers get a lot
because they do not have the "paranoia sense" developed enough to always test objects
with unknown origin before using them.

There is another type of exceptions that are called checked exceptions. This is any
type of exception that extends Exception—including custom exception classes declared
by the developer—that are declared as explicitly thrown by a method. In this case, when
invoking that method, the compiler forces the developer to treat that exception or throws
it forward. Let’s use a mock implementation for PerformerGenerator.

package com.apress.bgn.ch4.ex;

import com.apress.bgn.ch4.hierarchy.Gender;
import com.apress.bgn.ch4.hierarchy.Performer;

public class PerformerGenerator {

public static Performer get(String name)
throws EmptyPerformerException {
return new Performer(name,40, 1.91f, Gender.MALE);

The EmptyPerformerException is a simple custom exception class that extends the
java.lang.exception class.

package com.apress.bgn.ch4.ex;

public class EmptyPerformerException extends Exception {
public EmptyPerformerException(String message) {
super(message) ;

We declared that the get (. .) method might throw EmptyPerformerException; and
without a try/catch block wrapping that method call a compiler error is thrown, as
depicted in Figure 4-12.

143

CHAPTER 4 JAVA SYNTAX

B Project ~ [- T Ll € Addition.java & OperationDemo.java & ExceptionsDemojava
-gradie 1 package com.apress.bgn.chd.ex;
.idea 2
< chapter00 j import com.apress.bgn.chd.hierarchy.Performer;
u chapter01 5 b public class ExceptionsDemo {
& chapter03 e B
+ v chapter04 7 b public static void main(String... args) {
. “”b ,l“&””“ 8 Performer p = PerformerGenerator. John);
ui System.out.println("TTL: " + p.getTimeToLive());
out 1
st . }
& main_ B

java

2%
% EmptyPerformerException

& ExceptionsDemo
£ PerformerGenerator
hierarchy ExceptionsDemo

Figure 4-12. Java compiler error caused by checked exception

How do we fix it? Well, we write the code to catch it and print a relevant message.
package com.apress.bgn.ch4.ex;
import com.apress.bgn.ch4.hierarchy.Performer;

public class ExceptionsDemo {
public static void main(String... args) {
try {
Performer p = PerformerGenerator.get("John");
System.out.println("TTL: " + p.getTimeTolLive());
} catch (EmptyPerformerException e) {
System.out.println("Cannot use an empty performer
because of " + e.getMessage());

And since we are talking about exceptions, the try/catch block can be completed
with a finally block. The contents of the finally block are executed if the exception
is thrown further, or if the method returns normally. The only situation in which the
finally block is not executed is when the program ends in an error.

144

CHAPTER 4 JAVA SYNTAX

package com.apress.bgn.ch4.ex;
import com.apress.bgn.ch4.hierarchy.Performer;
public class ExceptionsDemo {

public static void main(String... args) {

try {
Performer p = PerformerGenerator.get("John");
System.out.println("TTL: " + p.getTimeTolLive());

} catch (EmptyPerformerException e) {
System.out.println("Cannot use an empty performer!");

} finally {
System.out.println("All went as expected!");

During this book, we write code that ends in exceptional situations, so we’ll have the
opportunity to expand the subject when your knowledge is a little more advanced.

Generics

Until now we talked only of object types and java templates used for creating objects. But
what if we would need to design a class with functionality that applies to multiple types
of objects? Since every class in Java extends the Object class, we can create a class with
a method that receives a parameter of type Object, and in the method we can test the
object type. Take this for granted; it is covered later.
In Java 5, the possibility to use a type as parameter when creating an object was
introduced. The classes that are developed to process other classes are called generics.
When writing Java applications, you most likely need at some point to pair up values
of different types. The simplest version of a Pair class that can hold a pair of instances of

any type is listed in the following code snippet.

package com.apress.bgn.ch4.gen;
public class Pair<X, Y> {

protected X x;
protected Y y;

145

CHAPTER 4 JAVA SYNTAX

private Pair(X x, Y y) {
this.x = x;
this.y = y;

}

public X x() {
return x;

public Y y() {
return y;

}

public void x(X x) {
this.x = x;

}

public void y(Y y) {
this.y = y;

}

public static <X, Y> Pair<X, Y> of(X x, Y y) {
return new Pair<>(x, y);

}

@Override public String toString() {
return "Pair{" + x.toString() +",

+ y.toString() + ’}’;

Let’s test it! Let’s create a pair of Performer instances, a pair of a String and a
Performer instance, and a pair of Strings to check if this is possible. The toString()}
method is inherited from the Object class and overridden in the Pair class to print the
values of the fields.

package com.apress.bgn.ch4.gen;

import com.apress.bgn.ch4.hierarchy.Gender;
import com.apress.bgn.ch4.hierarchy.Performer;

146

CHAPTER 4 JAVA SYNTAX

public class GenericsDemo {
public static void main(String... args) {
Performer john = new Performer("John", 40, 1.91f, Gender.MALE);
Performer jane = new Performer("Jane", 34, 1.591f, Gender.FEMALE);

Pair<Performer, Performer> performerPair = Pair.of(john, jane);
System.out.println(performerPair);

Pair<String, String> stringPair = Pair.of("John", "Jane");
System.out.println(stringPair);

Pair<String, Performer> spPair = Pair.of("John", john);
System.out.println(spPair);

System.out.println("all good.");

}
}
If you execute the preceding class, you see something like the log depicted, as
follows.

Pair{com.apress.bgn.ch4.hierarchy.Performer@1do57a39com.apress.bgn.ch4.
hierarchy.Performer@26be92ad}

Pair{JohnJane}

Pair{Johncom.apress.bgn.ch4.hierarchy.Performer@1do57a39}

all good.

The println method expects its argument to be a String instance, the toString()
method is called on the object given if argument if the type is not String. If the toString
method was not overridden, the one from the Object class is called that returns the
fully qualified name of the object type and something called a hashcode, which is a
numerical representation of the object.

Java Reserved Words

Table 4-2 and Table 4-3 list Java keywords that can be used only for their fixed and
predefined purposes in the language. This means they cannot be used as identifiers; you
cannot use them as names for variables, classes, interfaces, enums, or methods.

147

CHAPTER 4

JAVA SYNTAX

Table 4-2. Java Keywords (part 1)

Method Description

abstract Declares a class or method as abstract—as in any extending or implementing
class, must provide a concrete implementation.

assert Test an assumption about your code. Introduced in Java 1.4, it is ignored by the
JVM, unless the program is run with " -ea" option.

boolean Primitive type names

byte

char

short

int

long

float

double

break Statement used inside loops to terminate them immediately.

continue Statement used inside loops to jump to the next iteration immediately.

switch Statement name to test equality against a set of values known as cases.

case Statement to define case values in a switch statement.

default Declares a default case within a switch statement. Also used to declare default
values in interfaces. And starting with Java 8, it can be used to declare default
methods in interfaces, methods that have a default implementation.

try Keywords used in exception handling.

catch

finally

throw

throws

class Keywords used in classes and interfaces declarations.

interface

extends Keywords used in extending classes and implementing interfaces.

implements

148

(continued)

CHAPTER 4 JAVA SYNTAX

Table 4-2. (continued)

Method Description

enum Keyword introduced in Java 5.0 to declare a special type of class that defines a
fixed set of instances.

const Not used in Java; a keyword borrowed from C where it declares constants,
variables that are assigned a value, which cannot be changed during the
execution of the program.

final The equivalent of the const keyword in Java. Anything defined with this

modifier, cannot change after a final initialization. A final class cannot be
extended. A final method cannot be overridden. A final variable has the same
value that was initialized with throughout the execution of the program. Any code
written to modify final items, lead to a compiler error.

Table 4-3. Java Keywords (part 2)

Method Description
do Keywords to create loops:
while do{..} while(condition),
for while(condition){..},
for(initialisation;condition;incrementation){..}
goto Another keyword borrowed from C, but that is currently not used in Java,
because it can be replaced by labeled break and continue statements
if Creates conditional statements:
else if(condition) {..}
else {..}
else if (condition) {..}
import Makes classes and interfaces available in the current source code.
instanceof Tests instance types in conditional expressions.
native This modifier indicates that a method is implemented in native code using JNI

(Java Native Interface).

(continued)

149

CHAPTER 4

JAVA SYNTAX

Table 4-3. (continued)

Method Description

new Creates java instances.

package Declares the package the class/interface/enum/annotation is part of and it
should be the first Java statement line.

public Access-level modifiers for Java items (templates, fields, or methods).

private

protected

return Keyword used within a method to return to the code that invoked it. The
method can also return a value to the calling code.

static This modifier can be applied to variables, methods, blocks, and nested
classes. It declares an item that is shared between all instances of the class
where declared.

stricfp Used to restrict floating-point calculations to ensure portability. Added in
Java 1.2

super Keyword used inside a class to access members of the super class.

this Keyword used to access members of the current object.

synchronized Ensures that only one thread executes a block of code at any given time. This
avoids a problem cause “race-condition”.

transient Marks data that should not be serialized.

volatile Ensures that changes done to a variable value are accessible to all threads
accessing it.

void Used when declaring methods as a return type to indicate that the method
does not return a value.

_(underscore) Cannot be used as an identifier starting with Java 9.

3A detailed article describing this problem and ways to avoid it can be found here:
https://devopedia.org/race/-condition/-software

150

https://devopedia.org/race/-condition/-software

CHAPTER 4 JAVA SYNTAX

Summary

The most often used elements of the Java language were introduced in this chapter, so

that nothing you find in future code samples should surprise you, and you can focus on

learning the language properly.

Syntax mistakes prevent java code from being transformed into
executable code. This means the code is not compiling.

Static variables can be used directly when declaring classes if static
import statement are used.

Java identifiers must respect naming rules.

Comments are ignored by the compiler and there are three types of
comments in Java.

Classes, interfaces, and enums are Java components used to create
objects.

Abstract classes cannot be instantiated, even if they can have

constructors.

Interfaces could only contain method templates until Java version 8,
when default methods were introduced. And starting with Java 9 they
can contain full implemented methods as long as they are declared
private and are being called only from default methods.

Enums are special types of classes that can only be instantiated a
fixed number of times.

In Java, there is no multiple inheritance using classes.
Interfaces can extend other interfaces.

Java defines a fixed number of keywords, called reserved keywords,
which can be used only for a specific purposes. They are covered in
the previous section.

151

CHAPTER 5

Data Types

In Chapter 4, a lot of Java code was written, but when designing classes, only the
most simple data types were used: a few numeric ones and text. In the JDK, a lot of
data types are declared for a multitude of purposes: for modelling calendar dates,
for representing multiple types of numeric, for manipulating texts, collections, files,
database connections, and so forth. Aside from JDK, there are libraries created by
other parties that provide even more functionality. But the data types provided by the
JDK are fundamental ones, the bricks every Java application is built from. Of course,
depending on the type of application you are building, you might not need all of them.
For example, I've never had the occasion to use the java.util.logging.Logger class.
Most applications that I've worked on were already set up by a different team when I
came along, and they were using external libraries like Log4j or Logback, or logging
abstractions like S1f4;.

This section covers the basic Java data types that you need to write about 80% of any
Java application.

Stack and Heap Memory

Java types can be split in two main categories: primitive and reference types. Java code
files are stored on the HDD, Java bytecode files as well. Java programs run on the JVM,
which is launched as a process by executing the java executable. During execution, all
data is stored in two different types of memory named: stack and heap that are allocated
for a program’s execution by the operating system.

The stack memory is used during execution(also referred to as at runtime) to store
method primitive local variables and references to objects stored in the heap. A stack
is also a data-structure represented by a list of values that can only be accessed at one

153

© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_5

CHAPTER5 DATATYPES

end, also called a LIFO order, which is an acronym for Last In, First Out. The name fits,
because every time a method gets called, a new block is created in the stack memory
to hold local variables of the method: primitives and references to other objects in the
method.!

Each JVM execution thread has its own stack memory, and its size can be specified
using JVM parameter -Xss. If too many variables are allocated, or the method being
called is recursive and badly designed, the condition to return is never fulfilled, and
thus keeps calling itself forever. You run into a java.lang.StackOverFlowError, which
means there is no stack memory left, because every method call causes a new block to be
created on the stack.

The heap memory is used at runtime to allocate memory for objects and JRE classes.
Objects are instances of JDK classes or developer defined classes. Any object created
with new is stored inside the heap memory. Objects created inside the heap memory
can be accessed by all threads of the application. Access and management of the heap
memory are a little more complex and is covered more in Chapter 13. The -Xms and
-Xmx JVM parameters set the initial and maximum size of the heap memory for a Java
program during execution. The heap size may vary, depending on the number of objects
created by the program, and if all heap memory allocated to a Java program is full, then a
java.lang.OutOfMemoryError is thrown.

The JVM parameters are useful because during development, you might have to
write code that solves complex problems and that needs a bigger than usual stack or
heap memory, so instead of relying on the default sizes, you can set your own. Stack and
heap default values are platform-specific. If you are interested in these values, check out
the official documentation at https://docs.oracle.com/cd/E13150_01/jrockit_jvm/
jrockit/jrdocs/refman/optionX.html, which covers all JVM parameters and default
values. You can open the link in your browser and search for -Xss, -Xms, or -Xmx.

The java.lang.String class is the most used class in the Java programming
language. Because text values within an application might have the same value, for
efficiency reasons this type of objects are managed a little different within the heap. In
the heap there is a special memory region called the StringPool where all the String

'When the call ends, the block is removed (popped out) and new blocks are created for methods
being called after that. The first element in a stack it’s called head. Operations performed on a
stack have specific names: adding an element to the stack is called a push operation, inspecting
the first element in the stack is called a peek or fop operation and extracting the first element in
the stack;, its head, is called pop.

154

https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/jrdocs/refman/optionX.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/jrdocs/refman/optionX.html

CHAPTER5 DATATYPES

instances are stored by the JVM. This had to be mentioned here because the following

piece of code that is analyzed to explain how memory is managed in Java contains a

definition of a String instance, but the String Pool and other details about the String

data type is covered in detail in its own section later in the chapter.

Let’s consider the following executable class, and imagine how the memory is

organized during the execution of this program.

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

package com.apress.bgn.chs;
import java.util.Date;
public class PrimitivesDemo {

public static void main(String... args) {
int i = 5;
int j = 7;
Date d = new Date();
int result = add(i, j);
System.out.print(result);
d = null;

static int add(int a, int b) {
String mess = new String("performing add ...");
return a + b;

}
}

Can you figure out which variables are saved on the stack and which are on the

heap? Let’s go over the program line by line to see what is happening.

e Assoon as the program starts, Runtime classes that JVM need are
loaded in the heap memory.

o Themain() method is discovered in line 07 so a stack memory is
created to be used during the execution of this method.

o Primitive local variable in line 08, i=5, is created and stored in the
stack memory of main() method.

155

CHAPTER5 DATATYPES

o Primitive local variable in line 09, j=7, is created and stored in the
stack memory of main() method. At this point, the program memory
looks like what'’s depicted in Figure 5-1.

Stack .
Heap i

Memory Memory ;
e ™

int j=7 String Pool 5
----------- : (H
int i=
main() Y Y, '

Java Runtime Memory

Figure 5-1. Java stack and heap memory, after declaring two primitive variables

o Inline 10 an object of type java.util.Date is declared, so this object
is created and stored in the heap memory and a reference named d
is saved on the stack. At this point, the program memory looks like
what'’s depicted in Figure 5-2.

/ N4
L d:e\ String Pool :

Java Runtime Memory

Figure 5-2. Java stack and heap memory, after declaring two primitive variables
and an object

156

CHAPTERS5 DATATYPES

o Inline 11 method add() is called with arguments i and j. This means
their values is copied into the local variables for this method named a
and b and these two is stored in the memory block for this method.

o Inside the add(..) method body, in line 17 a String instance is
declared. So, the String object is created in the heap memory, in the
String Pool memory block, and the reference named mess is stored ,
in the stack, in the memory block for this method. At this point, the
program memory looks like what’s shown in Figure 5-3.

Heap
Stack Memory
Memory ' A
String Pool
i intb=7
! inta=5 |
eecosheey | [“Performingadd ..."]
_mess___| ' J
add()
.
dae T ——————— 1, Date ‘
int j=7 '
int i=5
main() b g

Java Runtime Memory

Figure 5-3. Java stack and heap memory, after calling the add(. .) method

o Alsoinline 11, the result of the execution of the add(. .) method is
stored in the local variable named result. Because at this point, the
add(. .) method has finished its execution, its stack block is discarded.
Thus we can conclude that variables that are stored on the stack exist
for as long as the function that created them is running. At this point in
the stack memory of main() method the result variable is saved.

157

CHAPTER5 DATATYPES

o Inline 12, the print method is called, but we’ll skip the explanation
for this line for simplicity reasons.

e Inline 13, the d reference is assigned a null value, which means,
the object of type Date is now only in the heap, and it is not linked
to the execution of the main method in any way. Look at it like this:
in that line, we are basically telling the JVM that were are no longer
interested in that object, which means the space containing it can be
collected and used to store other objects.

At this point, the program memory looks like what’s shown in Figure 5-4.

I Stack Heap
Memory Memory ;
N T e =
Pl result=12 | . :
) fg] smeEeesessed _ String Pool !
Sintb=7
! |ni‘a_.'é . Pop out
i AR we primitives and
emmpfomaees references [“Performing add ..." |
L e aerreuming |
i (|4 mess N from the add() :
method :
add() E
E ~\ ':
v dale = null '
'essrrnzrrs) ‘ Date .
intj= ;
inti=5
/
main() b N

Java Runtime Memory

Figure 5-4. Java stack and heap memory, before the ending of themain(. .)
method execution

After the program exits all memory contents are discarded.

158

CHAPTER5 DATATYPES

I When applying for a Java developer position, you will most likely be asked
about the differences between stack and heap memory. So, if you think that the
previous section did not clarify this for you, please feel free to consult additional
resources.?

Introduction to Java Data Types

The previous example showed that data types in Java can be split into two big groups
based on where they are stored during execution: primitive types and reference types. I'll
introduce them briefly and explain their most important members later.

Primitive Data Types

Primitive types are defined by the Java programming language as special types that do
not have a supporting class and are named by their reserved keyword. Variables of these
types are saved on the stack memory and when values are assigned to them using the =
(equals) operator, the value is actually copied. So, if we declare two primitive variables
of type int, as in the following code listing, we end up with two variables, k and g, both
having the same value: 42.

package com.apress.bgn.chs;
public class PrimitivesDemo {

public static void main(String... args) {

int k = 42;
int q = k;
System.out.println("k = " + k);
System.out.println("q = " + q);

2A very good article about this subject is at https://www. journaldev.com/4098/
java-heap-space-vs-stack-memory

159

https://www.journaldev.com/4098/java-heap-space-vs-stack-memory
https://www.journaldev.com/4098/java-heap-space-vs-stack-memory

CHAPTER5 DATATYPES

When passed as arguments to other methods, the values of primitive values are copied
and used without the initial variables being modified. This can be proved by creating a
method to swap the values of two int variables. The following is the code for the method.

package com.apress.bgn.chs;
public class PrimitivesDemo {

public static void main(String... args) {
int k = 42;
int q = 44;

swap(k, q);

"+ k);
"+ q);

System.out.println("k
System.out.println("q

}

static void swap(int a, int b) {
int temp = a;
a = b;
b = temp;

So, what do you think is printed as values for k and g? If you thought the output is the
same as the following, you are correct.

k = 42
q = 44

This happens because in Java passing arguments to a method is done through their
value, which means for primitives, changing the formal parameter’s value doesn’t affect
the actual parameter’s value. If you read the previous section, you can already imagine
what happens on the stack. When the swap () method is called a new stack memory
block is created to save the values used by this method. During the execution of the
method, the values might change, but if they are not returned and assigned to variables
in the calling method, the values are lost when the method execution ends. Figure 5-5
depicts the changes that take place on the stack during the execution of the code
previously listed. As you can obviously notice, the heap memory is not used at all.

160

CHAPTERS5 DATATYPES

srmisnonass : Heap
! a=44 : Memory

Java Runtime Memory

Figure 5-5. Java passing primitive arguments by value

Reference Data Types

There are four reference types in Java:
o classtypes
o interface types
e enums

e array types

Reference types are different from primitive types as these types are instantiable
(except interfaces). Objects of these types are created by calling constructors, and
variables of these types are references to objects stored in the heap. Because the
references are stored on the stack as well, even if we modify the previous code to use
references, the behavior is the same. Let’s introduce a class named IntContainer, whose
only purpose is to wrap primitive values into objects.

161

CHAPTER 5 DATATYPES

package com.apress.bgn.ch5;

public class IntContainer {
private int value;

public IntContainer(int value) {
this.value = value;

}

public int getValue() {
return value;

}

public void setValue(int value) {
this.value = value;

And now we create two objects of this type and two references for them and rewrite
the swap method.

package com.apress.bgn.ch5;
public class ReferencesDemo {

public static void main(String... args) {
IntContainer k = new IntContainer(42);
IntContainer q = new IntContainer(44);

swap(k,q);

System.out.println("k
System.out.println("q

" + k.getValue());
" + g.getValue());

}

static void swap(IntContainer a, IntContainer b) {
IntContainer temp = a;
a = b;
b = temp;

162

CHAPTERS5 DATATYPES

If we run the main(. .) method, you notice that we still get

~
1l

42
44

O
]

How can this be explained? In the same manner, Java still uses the same style of
arguments passing by value, only this time, the value of the reference is the one passed.
Figure 5-6 depicts what is going on in the memory managed by the JVM for the execution
of the previous code.

Execute reference swap

Figure 5-6. Java passing reference arguments by value

In a similar manner, the references to the objects are interchanged in the body of the
swap(..) method, but they have no effect on the k and q references, and neither on the
objects they point to in the heap. To really exchange the values, we need to exchange the
content of the objects by using a new object. Look at the following new version of the
swap(..) method.

package com.apress.bgn.chs;

public class ReferencesDemo {

163

CHAPTER5 DATATYPES

public static void main(String... args) {
IntContainer k = new IntContainer(42);
IntContainer q = new IntContainer(44);

swap(k,q);

System.out.println("k
System.out.println("q

"+ k.getValue());
" + gq.getValue());

}

static void swap(IntContainer a, IntContainer b) {
IntContainer temp = new IntContainer(a.getValue());
a.setValue(b.getValue());
b.setValue(temp.getValue());

By making use of setters and getters, we exchange the values of the objects, because
the references are never modified inside the body of the method. Figure 5-7 depicts what
happens within the memory during execution of the previous piece of code.

Stack Stack
Memory i Memory
Heap : 1 1 Heap
— Memory | [P . Memory !
v — | ¢ . i
temp || - ! temp : .
T ~ 2 | | I - i [2 |
L b \ S : | T | i} _)
e [~ : : e
! -\: G : : ‘ .\ ! P
] i ~J i] ') ~—
' a ' [' ' a T
AT M | \\\ _._T . ' S \ '
EINE .)
swap() B) 4 ' i swap(..) >"'~ b.setValuweylemp. getValue()) E
oo e ———>’{— : L9 ”}
____________ 42 | : : 44
I T \) | i =T |
E k : ' ' ?_-_-._—— a sefValveib.getVaiue())
........... J ' L .
main() main() \ |
—

Execute value swap

Figure 5-7. Java passing reference arguments by value, swapping object contents

164

CHAPTER5 DATATYPES

Maybe this example was introduced too early, but it was needed so you could witness as
early as possible the major differences between primitive and reference types. We'll list all the
differences in the summary, until then, let’s introduce the most used data types in Java.

Java Primitive Types

Primitive types are the basic types of data in Java. Variables of this type can be created by
directly assigning values of that type, so they are not instantiated.(That would be pretty
difficult to do since these types are not backed up by a class) In Java there are 8 types of
primitive types, six of them used to represent numbers, one to represent characters and
one to represent boolean values. Primitive types are predefined into the Java language
and they have names that are reserved keywords. Primitive variables can have values
only in the interval or dataset that is predefined for that type. When declared as fields of
a class at instantiation time, a default value specific to the type is assigned to the field.
Primitive values do not share state with other primitive values.

Most Java tutorials introduce the numeric types first, but this book starts with the

non-numerics.

The Boolean Type

Variables of this type can have only one of the two accepted values: true and false. This
type of variable is used in conditions to decide a course of action. The values true and
false are themselves reserved keywords. Default value for a boolean variable is false.
Another observation: when a field is of type boolean the getter for it has a different
syntax. It is not prefixed with get but with is. This makes sense because of what boolean
values are used for. They model properties with only two values. For example, let’s say we
are writing a class to model a conversion process. A boolean field marks the process state
as done or still in process. If the name of the field is done, a getter named getDone () would
be pretty unintuitive and stupid, but one named isDone () would be quite the opposite.
Let’s write that class and also add a main method to test the default value of the done field.

package com.apress.bgn.ch5;

public class ConvertProcess {
/* other fields and methods */

165

CHAPTER 5 DATATYPES
private boolean done;

public boolean isDone() {
return done;

}

public void setDone(boolean done) {
this.done = done;

}

public static void main(String... args) {
ConvertProcess cp = new ConvertProcess();

System.out.println("Default value = " + cp.isDone());

And as expected, the output printed is
Default value = false

The boolean type is not compatible with any other primitive type, assigning a
boolean value to an int variable by simple assignment(using =) is not possible. Explicit
conversion is not possible either. So, writing something like the following causes a
compilation error.

boolean f = false;
int fi = (int) f;

We'll be adding more information about this type in Chapter 6.

The char Type

The char type represents characters. The values are 16-bit unsigned integers
representing UTF-16 code units. The interval of the possible values for char variables

is: from '\u0000' to '\uffff' inclusive, as numbers this means: from 0 to 65535.

This means that we can try to print the full set of values. As the representation of the
characters is numeric, this means we can convert int values from interval to char values.
The following code snippet, prints all the numeric values of the char interval and their

matching characters.

166

CHAPTER5 DATATYPES

package com.apress.bgn.chs;

public class CharLister {
public static void main(String... args) {
for (int i = 0; i < 65536; ++i) {
char ¢ = (char) i;
System.out.println("c[" + 1 + "]=" + c);

I The last char value the for loop statement prints is 65535. The 65536 value is
used as an upper maximum value. So, if 1=65336, then nothing gets printed and
the execution of the statement ends. The fox loop is covered in detail in Chapter 8:
Controlling the flow.

Depending on the operating system, some of the characters might not be supported,
so they won’t be displayed, or they are replaced with a bogus character. The same goes
for whitespace characters.

If you think the interval dedicated to represent characters is too big, scroll the
console and you will understand why. The UTFE-16 character set contains all numbers as
characters, all separators, characters from Chinese, Arabic and a lot more symbols.?

Integer Primitives

In the code samples used so far to introduce Java language basics, we mostly used
variables of type int, but there is more than one numeric primitive type in Java.

Java defines six primitive numeric types, and each of them has a specific internal
representation, on a certain number of bits, which means that there is a minimum and
a maximum value. There are four numeric types to represent integer values and two
numeric types to represent real numbers. Figure 5-8 shows the integer types and the
interval of the values for each of them.

A complete list of the symbols and their meanings can be found at https://www.fileformat.
info/info/charset/UTF-16/1ist.htm

167

https://www.fileformat.info/info/charset/UTF-16/list.html
https://www.fileformat.info/info/charset/UTF-16/list.html

CHAPTER5 DATATYPES

MAX

9223372036854776807 4=

2147483647 1 —

32767 - =

127 -

0 L Lbyte Lshort Sint Liong

-128 L

-32768 4 J

-2147483648 _|_ _ _ .

-9223372036854775808 .

min
Figure 5-8. Java numeric types to represent integer values

Anything in a computer is represented using bits of information, each bit can
only have a value of 1 or 0, which is why it is called binary representation. Binary
representation is not the focus of this book, but a short mention is made because it is
important. You might be wondering now why the binary representation was chosen for
our computers? Well, primarily because data (in memory and on storage) is stored using
a series of ones (on) and zeros (off) binary representations; also binary operations are
really easy to do, and this makes computers very fast. Let’s take math for example, we
widely use the decimal system, which is made of 10 unique digits, from 0 to 9. Internally
computers use a binary system, which uses only two digits: 0 and 1. To represent
numbers bigger than 1, we need more bits. So, in a decimal system we have: 0, 1, 2, 3,
4,5,6,7,8,9,10, 11, and so forth, in a binary system to represent numbers we only have
two digits, so we’ll have: 0, 1, 10, 11, 100, 101, 110, 111, 1000, and so forth. If you imagine
a box in which you can only put ones and zeroes to represent numbers like a computer
does, you need more as the numbers get bigger. A bit can only have two values, so the
number of values to represent it is defined by a power of 2. Look at Figure 5-9.

168

CHAPTER5 DATATYPES

- —

1 Two bits

o
~[=lle]e
~[e]l~]e

|

Three bits

One bit L

—allallallallololo|l]|lO
= IO|=|O—=||O|—| O

Figure 5-9. Binary numeric representation

So, on one bit we can represent two values, which is 2!,on two bits we can represent
four values, which is 2% and so on. So, that is how we refer to Java primitive numeric types
representation boundaries, sometimes including a bit for the sign as well. Thus, the
following list contains the integer primitive types and their boundaries.

e byterepresents numbers between —27 and 27-1 inclusive ([-128,
127]). Default value for a byte field is 0 and is represented on 8 bits.

e short represents numbers between —2'° and 2'° — 1 inclusive
([-32768, 32767]). The values interval for this type is a superset of
the byte values interval, thus a byte value can be safely assigned to a
short variable without the need for an explicit conversion. This goes
for all types that have the values interval a superset of the one for the
byte type. In the next code snippet, a byte value is assigned to a short
variable and the code compiles and when executed prints 23.

Default value for a short field is 0 and is represented on 16 bits.

byte bv = 23;
short sbv = bv;
System.out.println("byte to short:

+ sbv);

o intrepresents integer numbers between —23' and 23 -1 inclusive
([-2147483648, 2147483647]). Default value for a byte field is 0 and

is represented on 32 bits.
169

CHAPTER5 DATATYPES

o longrepresents integer numbers between —2% and 2% — 1 inclusive
([-9223372036854775808, 9223372036854775807]) Default value
for a byte field is 0 and is represented on 64 bits.

I In practice sometimes the need to work with integer numbers outside the
interval 1ong appears. For this situations, in Java a special class (yes a class, not a
primitive type) was defined and is named BigInteger that allocates just as much
memory is needed to store a number of any size. Operations with BigInteger
might be slow, but this is the trade off to work with huge numbers.

Real Primitives

Real numbers are useful because most prices and most arithmetic operations executed
by programs do not result in an integer number. Real numbers contain a decimal point
and decimals after it. To represent real numbers in Java, two primitive types (called
floating-point types) are defined: float and double. Let’s discuss each of them in a little
more detail.

o float represents single-precision 32-bit format IEEE 754 values as
specified in IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754-1985 (IEEE, New York).The default value
is 0.0. A floating-point variable can represent a wider range of
numbers than a fixed point variable of the same bit width at the
cost of precision. Because of this values of type int or long can be
assigned to variables of type float. What is actually happening and
why the loss of precision? Well, a number is represented as a floating-
point number and an exponent, which is a power of 10. So, when the
floating-point number is multiplied with 10 at this exponent power,
the initial number should result. Let’s take the maximum long value,
assign it to a float variable, and check what is printed.

float maxLongF = Long.MAX VALUE;
System.out.println("max long= " + Long.MAX VALUE);

System.out.println("float max long= " + maxLongF);

170

CHAPTER5 DATATYPES

The Long.MAX_VALUE is a final static variable that has the maximum long value
assigned to it: 9223372036854775807. The preceding code prints the following.

max long= 9223372036854775807
float max long= 9.223372E18

Asyou can see, the maxLongF number should be equal to 9223372036854775807, but
because it is represented as a smaller number and a power of 10, precision is lost. Because
if we were to reconstruct the integer number by multiplying 9.223372 with 108 gives us
9223372000000000000. So yeah, close, but not close enough. So, what are the interval edges
for float? Float represents real numbers between 1.4E-* and 2'* * 10%.

e double represents single-precision 64-bit format IEEE 754 values as
specified in IEEE Standard for Binary Floating-Point Arithmetic, ANSI/
IEEE Standard 754-1985 (IEEE, New York)and represents numbers
between 4.9E-3** and 2'%” * 10°%. The default value is 0.0.

I Values 0 and 0.0 are different in Java. To a normal user, they both mean zero,
but in mathematics, the one with the decimal point is more precise. Still in Java
we are allowed to compare an int value to a float value, and if we compare 0
and 0.0, the result is that they are equal. Also positive zero and negative zero are
considered equal; thus the result of the comparison 0.0==-0.0 is true.

Developers cannot define a primitive type by defining it from scratch or by extending
an existing primitive type. Type names are reserved Java keywords, which cannot be
redefined by a developer. It is prohibited to declare fields, methods, or class names that
are named as those types.

A variable that we intend to use must be declared first. When it is declared, a value
can be associated as well. For primitive values, a number can be written in many ways.
The following shows a few samples of how numeric values can be written when variables

are initialized or assigned afterward.
package com.apress.bgn.ch5;

public class NumericDemo {
private byte b;
private short s;

171

CHAPTER5 DATATYPES

private int i;
private long 1;
private float f;
private double d;

public static void main(String... args) {
NumericDemo nd = new NumericDemo();

nd.b = 0b1100;
System.out.println("Byte binary value: " + nd.b);

nd.i = 42 ; // decimal case

nd.i = 045 ; // octal case - base 8

System.out.println("Int octal value: " + nd.i);

nd.i = Oxcafe ; // hexadecimal case - base 16

System.out.println("Int hexadecimal value: " + nd.i);
nd.i = 0b10101010101010101010101010101011;
System.out.println("Int binary value: " + nd.i);

//Java 7 syntax
nd.i = 0b1010 1010 1010 1010 1010 1010 1010 1011;
System.out.println("Int binary value: " + nd.i);

nd.l = 1000 000l; // equivalent to 1000_0OOL
System.out.println("Long value: " + nd.l);

nd.f = 5;

System.out.println("Integer value assigned to a float variable:
"+ nd.f);

nd.f = 2.5f; // equivalent to nd.f = 2.5F;
System.out.println("Decimal value assigned to a float variable:
"+ nd.f);

nd.d = 2.5d; // equivalent to nd.d = 2.5D;
System.out.println("Decimal value assigned to a double variable:
"+ nd.f);

172

CHAPTER5 DATATYPES

"non

Starting with Java 7, the "_" is permitted to be used when declaring numeric values

to group digits and increase clarity. When running the previous code, the following is
printed.

Byte binary value: 12

Int octal value: 37

Int hexadecimal value: 51966

Int binary value: -1431655765

Int binary value: -1431655765

Long value: 1000000

Integer value assigned to a float variable: 5.0
Decimal value assigned to a float variable: 2.5
Decimal value assigned to a double variable: 2.5

Since no formatting is done when the variables are printed, the values depicted in
the console are in the decimal system.

For now, this is all that can be said about the primitive types. Each of the primitive
types has a matching reference type defined within the JDK, and converting a primitive
value to its equivalent reference is called boxing and the reverse process is called
unboxing. In certain situation those processes are done explicitly, but more about that
later.

Java Reference Types

Java Reference Types were described earlier to highlight the differences between
primitive and reference types. It is now time to expand that description and give some
examples of the most used JDK reference types when programming.

Objects or instances are created using the new keyword followed by the call of a
constructor. The constructor is a special member of a class, used to create an object
by initializing all fields of the class with their default values, or values received as
arguments. A class instance is created by calling the class constructor (one of them,
because there might be more than one defined within the class). So, considering the
example that we had in Chapter 4, the Performer class, to declare a reference to an
object of type Performer the following expression is used.

Performer human = new Performer("John", 40, 1.91f, Gender.MALE);

173

CHAPTER5 DATATYPES

The interface reference types cannot be instantiated, but objects of class types that
extend that interface can be assigned to references of that interface type. The hierarchy
used in Chapter 4 is depicted in Figure 5-10.

Human

<<inferface>> <<interface>>
Musician Actor

Performer

Figure 5-10. Class and interface hierarchy

Based on this hierarchy, the following four statements are valid and they compile.
package com.apress.bgn.ch5;
import com.apress.bgn.ch4.hierarchy.*;
public class ReferencesDemo {

public static void main(String... args) {
Performer performer = new Performer("John", 40, 1.91f, Gender.MALE);
Human human = new Performer("Jack", 40, 1.91f, Gender.MALE);
Actor actor = new Performer("Jean", 40, 1.91f, Gender.MALE);
Musician musician = new Performer("Jodie", 40, 1.71f, Gender.
FEMALE);

In the example, we created four objects of type Performer and assigned them to
different reference types, including two interface reference types. If we were to inspect
the stack and heap contents for the preceding method, Figure 5-11 shows what we would
find. (Figure 5-11)

174

CHAPTERS5 DATATYPES

Stack Heap
Memory Memory :
e a4 & 5
E i I : -;I “Jodie” I, Objects of E

' Musician musician ! 2 type !

Fr e e e e . ' Performer

Figure 5-11. Multiple reference types
All the references in the previous example point to different objects in the heap, but
the following code is possible as well.
package com.apress.bgn.chs;
import com.apress.bgn.ch4.hierarchy.*;
public class ReferencesDemo {

public static void main(String... args) {
Performer performer = new Performer("John", 40, 1.91f, Gender.MALE);
Human human = performer;
Actor actor = performer;
Musician musician = performer;

175

CHAPTER5 DATATYPES

In the code snippet, we've created only one object, but multiple references to it,
of different types. If we were to inspect the stack and heap contents for the preceding
method, Figure 5-12 shows what we would find.

Stack Heap

Object of
type h
Performer -

Figure 5-12. Multiple reference types, second example

References can only be of the super-type of an assigned object, so the assignments in
the following code snippet will not compile.

package com.apress.bgn.chs;
import com.apress.bgn.ch4.hierarchy.*;
public class ReferencesDemo {

public static void main(String... args) {
Performer performer = new Performer("John", 40, 1.91f, Gender.MALE);
Human human = performer;
Actor actor = performer;
Musician musician = performer;

176

CHAPTER5 DATATYPES

//these will not compile!!!
performer = musician;

//or
performer = human;
//ox
performer = actor;

The reason for that is that the methods are called on the reference, so the object the
reference is pointing to must have those methods. So, if a reference is of type Performer
and getSongs () gets called on it, an object of type actor, like in the last line of code will
not have that method. That is why the Java compiler complains, and that is why smart
editors notify you by underlining the statement with a red line.

Sure, an explicit conversion can be made: performer = (Performer) actor;, and
this convinces the compiler that all is well, but this only causes an exception at runtime.

Arrays

The new keyword can also be used to create arrays. In a similar manner, it creates objects.
An array is a data structure that holds a group of variables together. Its size is defined
when it is created, and it cannot be changed.

Each variable can be accessed using an index that starts at 0 and goes up to the
length of the array to -1. Arrays can hold primitive and reference values. Let’s declare a
few arrays to show you how versatile and useful they are. Let’s declare first an array field
and check what is happening with it when an object is created.

package com.apress.bgn.ch5;
public class ArraysDemo {
int array[];

public static void main(String... args) {
ArraysDemo ad = new ArraysDemo();
System.out.println("array was initialized with " + ad.array);

177

CHAPTER5 DATATYPES

What do you think is printed in the console when the preceding code is executed? If
you assumed that the ad.array field is initialed with null, you were right.

Arrays are reference types, and thus when left to the JVM to initialize fields of this
type with a default value, null is used, as this is the typical default value for reference
types.

The null keyword represents a non-existing value. A reference that is assigned
this value does not have a concrete object assigned to it; it does not point to an object
in the heap. That is why when writing code, if an object is used (through its reference,
of course) before being initialized, a Nul1PointerException is thrown. This is why
developers test equality to null before using the object (or array). Let’s modify the
previous example to do that.

package com.apress.bgn.ch5;
public class ArraysDemo {
int array[];

public static void main(String... args) {
ArraysDemo ad = new ArraysDemo();

if (ad.array == null) {
System.out.println("array unusable");

Why do we need the null keyword to mark something that does not exist yet?
Because it is common practice in programming to declare a reference first and initialize
it only when first time used. This is useful, especially for objects that tend to be large in
size, and the process is called lazy loading.

Back to arrays. Let’s properly initialize the array field previously declared and give it a
size to see what happens.

1 package com.apress.bgn.ch5;
2.
3. public class ArraysDemo {
4
5

public static void main(String... args) {

178

CHAPTER5 DATATYPES

6 int[] array = new int[2];

7. for (int i = 0; i < array.length; ++i) {
8

9

System.out.println("array["+ i +"]= " + array[i]);

The initialization of the Array takes place in line 6 and the size of the array is 2. The
size of the array is given as a parameter to what it looks like a constructor call, only
instead of parentheses, square brackets are used. By setting the dimension of the array
to 2, we are telling the JVM that two adjacent memory locations must be put aside for
this object to store two int values in. And because, no values were specified as the array
contents, what do you think they are filled with when the array is created? Well, this is a
simple one: the previous array is defined to be made of two int values, so when the array
is initialized, the default value for the int type is used. Figure 5-13 depicts what happens
in the stack and heap memory when the previous code is executed.

! Stack Heap
Memory Memory !
e - 10]0]

| _.amay 0 . 5

' main()

Figure 5-13. Declaring an int array of size 2

In lines 7 to 9, a for loop prints the values of the array. The int i variable is what we
call an index variable and traverses all values of the array in increments of 1 in each step
of the loop. The array.length is the property containing the size of the array, how many
elements the array contains. As you probably expected, the output printed in the console is

179

CHAPTER5 DATATYPES

array[0]= 0
array[1]= 0

To put values in an array, we have the following choices.

e We access the element directly and we set the value.

array[0] = 5;

array[1] = 7;

//or

for (int i = 0; i < array.length; ++i) {
array[i] = i,

e Weinitialize the array explicitly with the values we intend to store.
int another[] = {1,4,3,2};

Arrays can contain references as well. The following code sample depicts how a
Performer array can be used.

package com.apress.bgn.chs;

import com.apress.bgn.ch4.hierarchy.*;
public class PerformerArrayDemo {
public static void main(String... args) {
Performer[] array = new Performer[2];
for (int i = 0; i < array.length; ++i) {

System.out.println("performer[" + i + "]= " + array[i]);

}
array[0] = new Performer("John", 40, 1.91f, Gender.MALE);
array[1] = new Performer("Julianna", 35, 1.61f, Gender.FEMALE);

for (int i = 0; i < array.length; ++i) {

System.out.println("performer[" + i + "]= " + array[i].
getName());

180

CHAPTERS5 DATATYPES

And because depicting the memory contents makes it more clear what happens with
our array and objects, I give to you Figure 5-14.

Stack Heap
Memory Memory

Figure 5-14. Declaring an array of Performers with size 2

So yeah, we have an array of references, and the object they point to can be changed
during the program.

Arrays can be multidimensional. If you studied advanced math, you probably
remember the matrix concept, which was a rectangular array arranged in rows and
columns. In Java, you can model matrices by using arrays. If you want a simple matrix
with rows and columns, you define an array with two dimensions.

package com.apress.bgn.chs;

public class MatricesDemo {
public static void main(String... args) {
// bi-dimensional array: 2 rows, 2 columns
int[][] intMatrix = {{1, o}, {0, 1}};

int[][] intMatrix2 = new int[2][2];
for (int i = 0; i < intMatrix2.length; ++i) {
for (int j = 0; j < intMatrix2[i].length; ++j) {
intMatrix2[i][j] = 1 + j;
System.out.print(intMatrix[i][j] + " ");

181

CHAPTER5 DATATYPES

System.out.println();

But you can get multidimensional and define as many coordinates as you want. The
next code snippet defines only three of them.

package com.apress.bgn.chs;

public class MatricesDemo {
public static void main(String... args) {
// cubical matrix, with three coordinates
int[J[][] intMatrix3 = new int[2][2][2];
for (int i = 0; i < intMatrix3.length; ++i) {
for (int j = 0; j < intMatrix3[i].length; ++j) {
for (int k = 0; k < intMatrix3[i][j].length; ++k) {
intMatrix3[i][j][k] =1 + J + k;
System.out.print("["+i+", "+j+", " + k + "]");
}
System.out.println();

}
System.out.println();

When it comes to arrays, make them as big as you need them and your memory
allows, but make sure to initialize them and make sure in your code that you do not try to
access indexes outside the allowed range. If the size of an array is N, then its last index is
N-1 and its first is 0. Try to access any index outside that range and an exception of type
java.lang.ArrayIndexOutOfBoundsException is thrown at runtime. So writing code like
this

int array = new int[2];
array[5] =7;

182

CHAPTER 5 DATATYPES
causes your program to crash at runtime, and the following is printed in the console.

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException:

Index 5 out of bounds for length 2
at chapter.five.collections/com.apress.bgn.ch5.ArraysDemo.main(ArraysDemo.
java:56)

For easier handling of arrays in Java, there is a special class: java.util.Arrays. This
class provides utility methods to sort and compare arrays, search elements, and convert
their content to text or a stream, so that they can print without writing the tedious for
loop.

int array = new int2;
System.out.println(Arrays.toString(ad.array));

//ox

Arrays.stream(array).forEach(ai -> System.out.println(ai));
//or using methods reference

Arrays.stream(array).forEach(System.out: :println);
//sorting

Arrays.sort(another);

Feel free to modify the code provided for this chapter to try some of those methods.

The String Type

The next special Java type on our list is String. You've seen it being used quite often until
now, without a detailed explanation. Together with the primitive int, this is one of the
most used types in Java. String instances model texts and perform all kinds of operations
on them. The String type is a special type, because objects of this type are given
special treatment by the JVM. If you remember the first image with memory contents,
String objects are allocated in the heap in a special place called the String Pool. This
section is dedicated to it; the String type is covered in detail, and a lot of your questions
you might have about this type should get answered.

Until now String variables were declared in this book like this:

String name= "John";

183

CHAPTER5 DATATYPES

But the String class has many constructors to initialize String variables. The
following is a set of String variables being declared and initialized.

package com.apress.bgn.ch5.refs;
public class StringDemo {

public static void main(String... args) {

1 String text1l = null;

2

3 String text21 = "two";

4 String text22 = "two";

5. String text23 = new String ("two");
6

7 String piecel = "t";

8 String piece2 = "wo";

9 String text24 = piecel + piece2;

11. char[] twoCh = {'t", 'w', '0'};
12. String text25 = new String(twoCh);

Lines 3, 4, 5,9, and 11 all define a String object with the same content two. We
intentionally did that, creating multiple String objects with the same value. In real life
applications, especially in this big data hype period, applications handle a lot of data,
most of it text form. So, being able to compress the data and reuse it would reduce the
memory consumption, also reducing memory access attempts also increases speed by
reducing processing, which in turn reduces costs.

Before continuing this section, I have to discuss what object equality means in
Java. Objects are handled in Java using references to them. The == operator compares
references; but if we want to compare the objects, we must use the equals () method.
This is a special method inherited from the Object class.

In Java String instances are immutable, which means they cannot be changed once
created. This means that the JVM can reuse existing values to form new string values,
without consuming additional memory. This process is called interning. One copy of
each text value (literal) is saved to a special memory region called String Pool. When

184

CHAPTER5 DATATYPES

anew String variable is created and a value is assigned to it, the JVM first searches the
pool for a string of equal value. If found, a reference to this memory address is returned,
without allocating additional memory. If not found, it'll be added to the pool and its
reference is returned.

This being said, considering the preceding sample code, we expect for text21 and
text22 variable to point to the same String object in the pool, which means references
are equal too. Let’s test that.

package com.apress.bgn.ch5.refs;
public class StringDemo {

public static void main(String... args) {
String text21 = "two";
String text22 = "two";

if (text21 == text22) {
System.out.println("Equal References");

} else {
System.out.println("Different References");

}

if (text21.equals(text22)) {
System.out.println("Equal Objects");

} else {
System.out.println("Different Objects");

When running the preceding code, the following is printed in the console, proving
the previous affirmations and the existence of the String pool.

Equal References
Equal Objects

Figure 5-15 shows an abstract representation of the memory contents when the code
is executed.

185

CHAPTER5 DATATYPES

Stack MHeap
Memory ooy :
'3 N
Fo=========x) E
L — :
text22 | \ !
jiii:fi::‘___________________-—- |_two” :
8 :
text21 : String Pool :
main() 4

Java Runtime Memory

Figure 5-15. String Pool example

When a new String object is created using the new operator, the JVM allocate new
memory for a new object and store it in the heap, so the String pool won’t be used.
This results in every String object created like this having its own memory region with
its own address. That is why if we were to compare variable text22 and variable text23,
from the initial code sample, we would expect their references to be different, but the
objects should be equal. Let’s test that.

package com.apress.bgn.ch5.refs;
public class StringDemo {

public static void main(String... args) {
String text22 = "two";
String text23 = new String ("two");

if (text22 == text23) {
System.out.println("Equal References");

} else {
System.out.println("Different References");

186

CHAPTER5 DATATYPES

if (text22.equals(text23)) {
System.out.println("Equal Objects");

} else {
System.out.println("Different Objects");

When running the preceding code, the following is printed in the console, proving
everything that was mentioned before.

Different References
Equal Objects

I leave it up to you to imagine what the stack and heap memory look like in the
previous example.*

The String Pool has a default size of 1009. Starting with Java 6, its size can be
modified using the -XX:StringTableSize.

** Lines 11 and 12 in the initial code sample depict how a String instance

is created from a char[3] array. Until Java 8, internally that was the initial
representation for String: arrays of characters. A character is represented on 2
bytes, which means a lot of memory was consumed for Strings. In Java 9, a new
representation was introduced called Compact String, which uses byte[] or
char[] depending on the content. This means that the memory consumed by your
String processing application is significantly lower starting with Java 9.

Escaping Characters

There are special characters that cannot be part of a String value. As you have probably
noticed, String values are defined between double quotes ("sample") and this makes
the "(double quote) character unusable as a value. To use it as a String value, it has to

“If you want to check if you understood memory management and Strings correctly, you
are welcome to draw your own picture and sent it to the author for a review and a technical
discussion.

187

CHAPTER5 DATATYPES

be escaped. Aside from this character there is also the \ (backslash) and the \a(alert).
Figure 5-16 shows how Intelli] IDEA tries to tell you that you cannot use those characters
in the content of a String value.

28 package com.apress.bgn.ch5.refs;

29

30 /K

31 % @author Iuliana Cosmina

32 * since 1.0

33 */

34 public class StringDemo {

35

36 public void sample(String args) {

37 String text332 = "Special "_character ";
38 String text331 = "Special \" character";
39

40 String text341 = “Special _character;
41 String text342 = "Special \\ character";
42

43 String text351 = "Special \a character’;
44 String text352 = “Special \\a character";
45 }

46 }

Figure 5-16. Code samples with special characters

To escape those characters, a backlash must be inserted before them. The ' (single
quote) must be escaped as well when used as a character value.

char quote = "\";

There are some other Java escape sequences that can be used in String values to get
a certain effect, which are listed in Table 5-1.

Table 5-1. Java Escape Sequences

Escape Sequence Effect

\n Create a new line (often called the newline character)
\t Create a tab
\b Create a backspace character (which might delete the preceding character,

depending on the output device)

\r Return to the start of the line (but do not make a new line, the equivalent of the
Home key on the keyboard)

\f Form feed (move to the top of the next page for printers)

188

CHAPTER5 DATATYPES

The newline \n and the tab \t character are used often in programming to properly
format console output. If we define a String instance like the following,

String perf = "The singers performing tonight are: \n\t Paolo Nutini \n\t
Seth MacFarlane
\n\t John Mayer";

When printed in the console, the text is formatted to look like this:

The singers performing tonight are:
Paolo Nutini
Seth MacFarlane
John Mayer

Wrapper Classes

Each primitive type has a corresponding reference type. Before covering each of them
and explaining why they are needed, please take a look at Table 5-2. The Java wrapper
classes wrap a value of the primitive type with the same name.

Table 5-2. Java Primitive and Equivalent Reference Types

Primitive Class

byte java.lang.Byte
short java.lang.Short
int java.lang.Integer
long java.lang.long
float java.lang.Float
double java.lang.Double
boolean java.lang.Boolean
char java.lang.Char

In addition, these classes provide methods for converting primitive values to String
and vice versa, as well as constants and methods useful when dealing with primitive
types that need to be treated as objects. The numeric wrapper classes are related, all of
them extend the Number class, as depicted in Figure 5-17.

189

CHAPTER5 DATATYPES

I ‘= Serializable

A A A

- -

-

1
c© Character| % = Boolean © By1e| © - Integer © = Double

-

® = Long © - Short © » Float

Figure 5-17. Wrapper classes hierarchy

The following code samples mostly use the Integer class, but the other numeric
wrapper classes can be used in a similar way. The JVM knows how to convert a primitive
int into an Integer object automatically when needed, operation that is called boxing
and from an Integer object to a primitive int, operation that is called unboxing. The
following code sample contains a few operations with Integer and int values.

package com.apress.bgn.ch5.refs;

public class WrapperDemo {
public static void main(String... args) {
// upper interval boundary for int
Integer max = Integer.MAX VALUE;
System.out.println(max);

//unboxing
int pmax = max;

//boxing
Integer io = 10;

//creating primitive utility method
//exception is thrown, if string is not a number
int i1 = Integer.parselnt("11");

//constructor deprecated in Java 9
//exception is thrown, if string is not a number
Integer i2 = new Integer("12");

190

CHAPTER5 DATATYPES

//exception is thrown, if string is not a number
Integer i3 = Integer.valueOf("12");

//convert int into to String
String so = Integer.toString(13);

//convert int to float
float f0 = Integer.valueOf(14).floatValue();

//creating string with binary representation of number 9 (1001)
String s1 = Integer.toBinaryString(9);

//introduced in Java 1.8
Integer i4 = Integer.parseUnsignedInt("+15");

//method to add to integers
int sum = Integer.sum(2, 3);

//method to get the bigger value
int maximum = Integer.max(2, 7);

The Character and Boolean types are a little bit different, because these types are not
numeric, so they cannot be converted to any numeric value. They cannot be converted
one to another either. Oracle provides really good documentation for its classes, so if you
are curious about using these two types, check out the official JDK API documentation
athttps://docs.oracle.com/javase/10/docs/api/index.html?overview-summary.
html.

Date Time API

A lot of applications make use of calendar date types to print the current date, deadlines,
and birthdays. No matter what application you decide to build you most likely need to
use calendar dates. Until Java 8, the main class to model a calendar date was java.util.
Date. There are a few problems with this class and others involved in handling calendar
dates. But before we get into that, let’s see how we can get the current date, create a
custom date, and print certain details.

191

https://docs.oracle.com/javase/10/docs/api/index.html?overview-summary.html
https://docs.oracle.com/javase/10/docs/api/index.html?overview-summary.html

CHAPTER S5 DATATYPES
package com.apress.bgn.chs;

import java.util.Date;
import java.text.SimpleDateFormat;

public class CalendarDateDemo {
public static void main(String... args) {
SimpleDateFormat sdf = new SimpleDateFormat("dd-MM-yyyy");
Date currentDate = new Date();
+ sdf.format(currentDate));

System.out.println("Today:

//deprecated since 1.1
Date johnBirthday = new Date(77, 9, 16);
System.out.println("John’s Birthday: " + sdf.format(johnBirthday));

int day = johnBirthday.getDay();
System.out.println("Day: " + day);

int month = johnBirthday.getMonth() + 1;
System.out.println("Month: " + month);
int year = johnBirthday.getYear();
System.out.println("Year: " + year);

Getting the current date is simple; just call the default constructor of the Date class.
Date currentDate = new Date();

The contents of the currentDate can be displayed directly, but usually an instance
of java.text.SimpleDateFormat is used to format the date to a pattern that is country
specific. The formatter can also be used to convert a String with that specific format
intro a Date instance. Of course, if the text does not match the pattern of the formatter, a
specific exception is thrown (type: java.text.ParseException)

SimpleDateFormat sdf = new SimpleDateFormat("dd-MM-yyyy");
System.out.println(currentDate);
System.out.println("Today: " + sdf.format(currentDate));
Date johnBirthday = sdf.parse("16-10-1977");

192

CHAPTER5 DATATYPES

To create a Date instance from the numbers representing a date: year, month and
day, a constructor that takes those values as arguments can be used, although that
constructor has been deprecated since Java 1.1, and the recommended way is to use
the sdf.parse(..) method. The constructor has a few particularities regarding its
arguments.

o changes the technical meaning again the year argument must be the
intended year value from which 1900 is subtracted

o the months are counted from 0, so the month to give as an argument,
must be the month we want -1

The code to construct a Date from the numeric values for the year, month, and day is
depicted as follows.

//deprecated since 1.1

Date johnBirthday = new Date(77, 9, 16);

System.out.println("John's Birthday: " + sdf.format(johnBirthday));
//it prints: John's Birthday: 16-10-1977

If we want to extract the year, month, and day of the month from the date, there are
methods for that: the method to extract the day of the month is named getDate().

try {
johnBirthday = sdf.parse("16-10-1977");

} catch (ParseException e) {
e.printStackTrace();

}
System.out.println("John's Birthday: " + sdf.format(johnBirthday));

//day of the month
int day = johnBirthday.getDate();
System.out.println("Day: "

+ day);

int month = johnBirthday.getMonth() + 1;

System.out.println("Month: " + month);

int year = johnBirthday.getYear();
System.out.println("Year: " + year);

193

CHAPTER5 DATATYPES

If you inspect the CalendarDateDemo class in the Intelli] IDEA editor, you notice
that some constructors and methods are written with a strikethrough font. This means
that they are deprecated and might be removed in future versions of Java and thus they
should not be used. That is why there is another way to do all of that: use the java.util.
Calendar class. The code to do the same as before, but using the Calendar class is listed
next.

package com.apress.bgn.chs;

import java.util.Calendar;

import java.util.Date;

import java.util.GregorianCalendar;
import java.text.SimpleDateFormat;

public class CalendarDateDemo {
public static void main(String... args) {
SimpleDateFormat sdf = new SimpleDateFormat("dd-MM-yyyy");
Calendar calendar = new GregorianCalendar();
Date currentDate = calendar.getTime();
System.out.println("Today: " + sdf.format(currentDate));

calendar.set(1977, 9, 16);
Date johnBirthday = calendar.getTime();
System.out.println("John’s Birthday: " + sdf.format(johnBirthday));

int day = calendar.get(Calendar.DAY OF MONTH);
System.out.println("Day: " + day);

int month = calendar.get(Calendar.MONTH);
System.out.println("Month: " + month);

in year = calendar.get(Calendar.YEAR);
System.out.println("Year: " + year);

Unfortunately some of the peculiarities remain, as the central class for representing
dates is still the java.util.Date, but at least we are not using anything deprecated
anymore.

194

CHAPTER5 DATATYPES

The java.util.Date class and the java.text.SimpleDateFormat class are not
thread safe, so in complex applications with multiple execution threads, developers
must synchronize access to those type of objects explicitly. Objects of those types are not
immutable, and working with time zones is a pain. That is why in Java 8, a new API to
model calendar-date operations was introduced. It is better designed, and date instances
are thread-safe and immutable. The central classes for the API are java.time.lLocalDate
and java.time.LocalDateTime, used to model calendar dates and calendar dates with
time. Let’s see how the code to get the current date and to create a custom date looks
with the new APIL.

package com.apress.bgn.chs;

import java.time.localDate;
import java.time.LocalDateTime;
import java.time.Month;

public class CalendarDateDemo {
public static void main(String... args) {
LocalDateTime currentTime = LocalDateTime.now();
System.out.println("Current DateTime: " + currentTime);
LocalDate today = currentTime.tolLocalDate();
System.out.println("Today: " + today);

LocalDate johnBd = LocalDate.of(1977, Month.OCTOBER, 16);
System.out.println("John’s Birthday: " + johnBd);

int day = johnBd.getDayOfMonth();

System.out.println("Day: " + day + ", " + johnBd.getDayOfWeek());
int month = johnBd.getMonthValue();

System.out.println("Month: " + month + ", " + johnBd.getMonth());
int year = johnBd.getYear();

System.out.println("Year: " + year);

To get the current date and time a static method named now() is called, which
returns an instance of type LocalDateTime. This instance can get the current date by
calling toLocalDate().

195

CHAPTER5 DATATYPES

To create a custom date, the actual year and day of month can be used as parameters
and the month can be specified using one of the values of the java.time.Month enum.

Extracting information regarding a date can be done easily by calling methods with
intuitive names. Look at the getDayOfMonth() and getDayOfWeek () methods in the
previous snippet. Their name reflects exactly what data they are returning.

The LocalDate and LocalDateTime classes simplify the development where time
zones are not required. Working with time zones is an advanced subject, so it won’t be
covered in this book.

Collections

Among the most important family types in JDK are collections. Classes and interfaces
in the collections family model common data collections, such as sets, lists, and maps.
All the classes are stored under package java.util and can be split into two categories:
tuples and collections of key-value pairs. The tuples are unidimensional sets of data: if
the values are unique, any class implementing the java.util.Set interface should be
used to model them, if not any class implementing the java.util.List interface should
be used. For collections of key-value pairs classes, implementations of java.util.Map
should be used.

Starting with Java 1.5 collections have become generic, which allows developers
more precision and security when working with them. Before Java 1.5, collections could
contain any type of objects. Developers can still write code like this:

package com.apress.bgn.chs;

import com.apress.bgn.ch4.hierarchy.Gender;
import com.apress.bgn.ch4.hierarchy.Performer;

import java.util.*;
public class CollectionsDemo {

public static void main(String... args) {
List objList = new ArraylList();
objList.add("temp");
objList.add(Integer.value0Of(5));
objList.add(new Performer("John", 40, 1.91f, Gender.MALE));

196

CHAPTER5 DATATYPES

When you iterate this list, it is difficult to determine which objects you are handling

without complicated code analyzing the type of each object. This was mentioned at the

end of Chapter 4 when generics were introduced. The code to iterate the list and process

the elements is depicted next to show you why this is a bad idea and bad practice in this
day and age of Java.

package com.apress.bgn.chs;

import com.apress.bgn.ch4.hierarchy.Gender;

import com.apress.bgn.ch4.hierarchy.Performer;

import java.util.*;

public class CollectionsDemo {

public static void main(String... args) {

List objList = new ArraylList();

objList.add("temp");

objList.add(Integer.value0Of(5));

objList.add(new Performer("John", 40, 1.91f, Gender.MALE));

for (Object obj : objList) {
if (obj instanceof String) {
System.out.println("String object = " + obj.toString());
} else if (obj instanceof Integer) {
Integer i = (Integer)obj;
System.out.println("Integer object = " + obj.toString());
} else {
Performer p = (Performer) obj;
System.out.println("Performer object =

+ p.getName());

Maybe this is not clear to you now, but to use the contents of the list, you have to
know all the types of objects that were put in the list. This might be doable when you are
working on a small project, but in a bigger project with multiple developers involved,

this can get messy really fast.

197

CHAPTER5 DATATYPES

This is where generics come to help. Generics help define at compile time what
types of objects should be put into a collection, and thus, if the wrong object type is
added to the collection, the code no longer compiles. Both lists and sets implement the
same interface: java.util.Collection<T>, which means their API is almost the same.
Figure 5-18 shows a simplified hierarchy of the collections with the most used classes
and interfaces in programming Figure 5-18.

1 Collection

1 Set 1 List |

¢ T:eeSetl © » HashSet € - ArrayList ® LinkedList

© = LinkedHashSet ‘

© '« HashMap 4 TreeMun' © '» Hashtable

|

€ » LinkedHashMap

Figure 5-18. Collection hierarchy

Let’s start with a list example.
package com.apress.bgn.ch5;
import java.util.*;
public class CollectionsDemo {

198

CHAPTER5 DATATYPES

public static void main(String... args) {
List<String> stringlist = new ArraylList<String>();
stringlist.add("one");
stringlist.add("two");
stringlist.add("three");

for (String s : stringlist) {
System.out.println(s);

A List contains an unsorted collection of non-unique data, null elements
included. In the example, we declared a reference of type List<T> and an object of type
ArraylList<T>. We did this because as all implementations have the same API, we could
easily switch ArrayList<T> with LinkedList<T> and the code still works. Declaring
abstract references is a good programming practice.

List<String> stringlist = new ArraylList<String>();
stringlist = new LinkedlList<String>();

The syntax in the previous examples are pre-Java 1.7, when the <> (diamond
operator) was introduced. This allowed more simplification of collections initializations,
because it only required declaring the type of the elements in the list only in the
reference declaration. So, the two lines in the previous code snippet became

List<String> stringlist = new ArraylList<>();
stringlist = new LinkedlList<>();

Every new Java version has added changes to the collection framework starting with
Java 1.5. In Java 1.8, support for lambda expressions was added with a default method
named forEach in the java.lang.Iterable<T> interface, which is extended by the java.
lang.Collection<T>. So, the code to print all the values in the list, as we did previously
using a for loop, can be replaced with

stringlist.forEach(element -> System.out.println(element));

199

CHAPTER5 DATATYPES

In Java 9, yet another improvement was introduced: factory methods for collections.
Our collection was populated with elements by repeatedly calling add(. .), which is a
little redundant, especially since we have the full collection of elements we want to put in
the list. That is why in Java 9 methods to create collection objects in one line of code were
introduced; for example,

List<String> stringlist = List.of("one", "two", "three");

The resulting List<T> is an immutable collection; it can no longer be modified, and
elements cannot be added or removed from it.

Moving closer to the present, in Java 10, support for local variable type inference
was added, which means that we no longer have to explicitly specify the reference
type, because it is automatically be inferred based on the object type, so the following
declaration

List<String> stringlist = List.of("one", "two", "three");
becomes
var stringlist = List.of("one", "two", "three");

Similar code can be written with Set<T>, HashSet<T>, and TreeSet<T>, and similar
methods exist for the Set<T> classes.

Map implementations come with a few differences because they model collections of
key-value pairs; so this case is treated separately. The following code snippet depicts the
creation, initialization of a map that uses keys of type String and values of type Integer.
The syntax is Java 6.

package com.apress.bgn.ch5;
import java.util.*;
public class CollectionsDemo {

public static void main(String... args) {
Map<String, Integer> stringMap = new HashMap<String, Integer>();
stringMap.put(“one", 1);
stringMap.put("two", 2);
stringMap.put("three", 3);

200

CHAPTER5 DATATYPES

for (Map.Entry<String, Integer> entry : stringMap.entrySet()) {
+ entry.getValue());

System.out.println(entry.getKey() +

From the for loop, you can infer that a map is a collection of Map.Entry<K, V>
elements. If we were to move ahead to the Java 1.7 syntax, the declaration of the map
changes to

Map<String, Integer> stringMap = new HashMap<>();
In Java 1.8, traversal and printing values in maps became more practical.
stringMap.forEach((k,v) -> System.out.println(k + ": " + v));
And in Java 9, declaring and populating a map became easier.
Map<String, Integer> stringMap = Map.of("one", 1,"two", 2, "three", 3);
And local variable type inference works for maps too.
var stringMap = new HashMap<String, Integer>();

The JDK classes for working with collections, cover a wide range of functionality,
such as sorting, searching, merging collections, intersections, and so on. As the book
advances, the context of the code samples widen, and we are able to use collections to
solve real-life problems. So, other methods are covered and working code samples are
provided.

Concurrency Specific Types

A Java program can have more than one execution thread. By default, when a Java
program is executed, a thread is created for the code that is called from the main method
and a few other utility threads are created and executed in parallel for JVM related
things. These threads can easily be accessed using static utility methods defined in

the java.lang.Thread class. The following code sample does just that: extracts the
references to the Thread instances and prints their name in the console.

201

CHAPTER5 DATATYPES
package com.apress.bgn.chs;

public class ListIvmThreads {
public static void main(String... args) {
var threadSet = Thread.getAllStackTraces().keySet();
var threadArray = threadSet.toArray(new Thread[threadSet.size()]);

for (int i = 0; i < threadArray.length; ++i) {

System.out.println("thread name: " + threadArray[i].getName());

The output produced by running the code in JDK 11 prints the following.

thread name: Reference Handler
thread name: Monitor Ctrl-Break
thread name: Finalizer

thread name: main

thread name: Signal Dispatcher
thread name: Common-Cleaner

The thread named main is the thread that executes the developer written code. The
developer can write code to start its own threads from the main thread. The simplest way
to create a custom thread is to create a class that extends the Thread class. The Thread
class implements an interface named Runnable that declares a single method named
run(). The Thread class declares a method named start(). When this method is called,
the body of the run() method is executed in a separate execution thread.® Thus, when
extending the Thread class, the run() method must be overridden.

The following example depicts a class named CounterThread. The contents of
the run() method is designed to pause the execution from time to time by calling the
Thread.sleep(..) utility method. The body of the method is wrapped in two lines
of code that print the name of the thread and a starting message and the name of the
thread and an ending message. This is necessary to slow down the execution of this type
of thread, so that we can clearly see they are executed in parallel.

°Sure, the internal of thread management is much more complicated, but this section scratches
the surface.

202

CHAPTER5 DATATYPES

package com.apress.bgn.chs;

public class CounterThread extends Thread {
@verride
public void run() {
System.out.println(this.getName() + " started...");
for (int i = 0; 1 < 10; ++1) {
try {
Thread.sleep(i * 10);
} catch (InterruptedException e) {
e.printStackTrace();

}
System.out.println(this.getName() + " ended.");

To test our thread class is as simple as instantiating it a few times and calling the
start() method.

package com.apress.bgn.ch5;

public class ThreadDemo {
public static void main(String... args) {

for (int i = 0; 1 < 10; ++i) {
new CounterThread().start();

In the example, ten instances of class CounterThread were created and the start()
method was called for each of them. When the previous code is executed, a log similar to
the following should print in the console.

Thread-0 started...
Thread-3 started...
Thread-8 started...
Thread-9 started...

203

CHAPTER5 DATATYPES

Thread-7 started...
Thread-6 started...
Thread-1 started...
Thread-2 started...
Thread-4 started...
Thread-5 started...
Thread-4 ended.
Thread-1 ended.
Thread-9 ended.
Thread-7 ended.
Thread-5 ended.
Thread-8 ended.
Thread-0 ended.
Thread-6 ended.
Thread-2 ended.
Thread-3 ended.

Another way to create threads is by creating a class that implements the Runnable
interface. This is useful when we want to customize the execution in the run method a
little more and maybe extend another class. Or, considering that the Runnable declares
one method, lambda expressions can be used too. Let’s declare the equivalent Runnable
implementation.

package com.apress.bgn.chs;
import static java.lang.Thread.*;

public class CounterRunnable implements Runnable {

@verride
public void run() {
System.out.println(Thread.currentThread().getName() + " started...");
for (int i = 0; 1 < 10; ++1) {
try {
Thread.sleep(i * 10);
} catch (InterruptedException e) {
e.printStackTrace();

204

CHAPTER5 DATATYPES

}
System.out.println(Thread.currentThread().getName() + " ended.");

Because we no longer have access to the name of the thread, to print it we must use
another utility method Thread. currentThread() to retrieve a reference to the current
thread in execution. The Thread class provides a constructor with a parameter of type
Runnable, this means it can be called with any argument of a type that implements
Runnable. And thus, to create threads using CounterRunnable, code similar to the
following example can be written.

package com.apress.bgn.chs;

public class LambdaRunnableDemo {
public static void main(String... args) {
for (int i = 0; 1 < 10; ++1) {
new Thread(new CounterRunnable()).start();

If this code is run, we’'ll get a similar output.
This is a good candidate for using lambda expressions, because Runnable can be
implemented on the spot. So, the previous code can also be written as follows.

for (int i = 0; 1 < 10; ++1) {
new Thread(
//Runnable implemented on the spot
0 ->A{
System.out.println(currentThread().getName() + " started...");
for (int j = 0; j < 10; ++j) {
try {
sleep(j * 10);
} catch (InterruptedException e) {
e.printStackTrace();

205

CHAPTER5 DATATYPES

System.out.println(currentThread().getName() + " ended.");
}).start();

}

Java provides thread management classes that can create and manage threads, so
the developer mustn’t declare the threads explicitly. The concurrency framework is a
subject too advanced for this book, but if this section has made you curious, the Oracle
Concurrency tutorial is at https://docs.oracle.com/javase/tutorial/essential/
concurrency/index.html.

Summary

In this chapter, you learned how memory for a Java program is administered by the JVM
and the basics of the most used Java data types. We discussed the following.

e how the memory is managed during the execution of a Java program
o thedifferences between primitive and reference types

e how many primitive types are defined in Java

o why the String type is special

e how to work with calendar dates

e how arrays are declared and used

e hownullis used

o howto declare and use collection implementations

If some of the examples in this chapter seem complicated, do not be discouraged.
It is difficult to explain certain concepts without providing working code that you can
execute, test, and even modify yourself. Unfortunately, this requires the use of concepts
introduced in later chapters (e.g., for and if statements). Make a note of every concept
that it is not clear now, and the page number, and return to this chapter after you read
about the concept in more detail later in the book.

206

https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

CHAPTER 6

Operators

The previous chapters covered the basic concepts of Java programming. You were taught

how to organize your code, how your files should be named, and which data types you

can use, depending on the problem you are trying to solve. You were taught how to

declare fields, variables, and methods and how they were stored in memory to help you

design your solutions so that resource consumption is optimal.

In this chapter, you learn to combine declared variables using operators. Most Java

operators are the ones you know from math, but because programming involves types

other than numeric, extra operators with specific purposes were added. Table 6-1 lists all

Java operators with their category and scope.

Table 6-1. Java Operators

Category

Operator

Scope

casting
unary, postfix
unary, prefix
unary, logical

unary, bitwise

multiplicative, binary

additive, binary

(type)
expr++, expr—

++EXpr, —expr

explicit type conversion
post increment/decrement
pre increment/decrement
negation

bitwise complement performs a bit-by-bit
reversal of an integer value

for numeric types: multiply, divide, and return
remainder

for numeric types: addition, subtraction; “+”
also used for String concatenation

© Iuliana Cosmina 2018

(continued)

207

1. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_6

CHAPTER6 OPERATORS

Table 6-1. (continued)

Category Operator Scope
bit shifting, binary >, <&, >>> for numeric types: move bits to the right, left,
and right ignoring the sign
conditional, relational instanceof tests whether the object is an instance of the
specified type (class or subclass or interface)
conditional, relational ==, l=; ¢, >, equals differs from, lesser than, greater than,
<=, >= less than or equals, greater than or equals
AND, binary & bitwise logical AND
exclusive OR, binary A bitwise logical XOR
inclusive OR, binary | bitwise logical OR
conditional, logical AND &&
conditional, logical OR | |
conditional, ternary ? also called the Elvis operator
assignment =, +=, -=, *=, simple assignment, combined assignments
/= %=, &=, "=,

L= >>=, >>>=

:|=

Let’s start this chapter with the most common operator in programming: the
assignment operator (=).

The Assignment Operator (=)

This operator is the most used in programming, as nothing can be done without it. Any
variable that you create, regardless of the type, primitive or reference has to be given a
value at some point in the program. Setting of a value using the assignment operator is
quite simple: on the left side of the operator you have the variable name and on the right
itis a value. The only condition for an assignment to work is that the value matches the
type of the variable.

208

CHAPTER6 OPERATORS

To test this operator, you can play a little using jshell; make sure that you start it in
verbose mode so you can see the effect of your assignments.

$ jshell -v

| Welcome to JShell -- Version 11-ea
| For an introduction type: /help intro
[jshell> int i = 0;

i ==>0

| created variable i : int

[jshell> i = -4;

i==>-4

| assigned to i : int

jshell> String sample = "text"
[sample ==> "text"
| created variable sample : String

[jshell> List<String> list = new Arraylist<>()
list ==> []
| created variable list : List<String»

[jshell> list = new LinkedList<>();
list ==> []
| assigned to list : List<String>

In the previous example, we declared primitive and reference values and assigned
and reassigned values to them. Assignment of values with types that mismatch the initial
type is not permitted. In the following code sample, we are trying to assign a text value to
avariable that was previously declared as having the int type.

[jshell> int i = 0;
i==>0
| created variable i : int
[jshell> i = -4;

i==>-4

| assigned to i : int

209

CHAPTER6 OPERATORS

[jshell> i = "gigi pedala"

| Error:

| incompatible types: java.lang.String cannot be converted to int
| i = "gigi pedala"

|

Introduction of type inference in JDK 10 does not affect this, and the type of the
variable is inferred depending on the type of the first value assigned. This means that
you cannot declare a variable using the var keyword without specifying an initial value.
This excludes the null value, as it cannot be used to declare a type. This can be forced
though by casting the null value to the type we are interested in.

jshell> var j;

cannot infer type for local variable j
(cannot use ’var’ on variable without initializer)
var j;

N N

[
| Error:
|
|
|
|

[Jshell> var j =

J::

| created variable j : int
[jshell> var sample2 = "bubulina"

sample2 ==> "bubulina"
| created variable sample2 : String

// yes, this actually works !
[jshell> var funny = (Integer) null;
funny ==> null

| created variable funny : Integer

This is all that can be said about the assignment operator. Other details are covered
later with the composed assignment operators.

210

CHAPTER6 OPERATORS

Explicit Type Conversion (type) and instanceof

We coupled these two operators in the same section, because it is easier to provide code
samples that are identical to what you use frequently in your job as a developer. (should
you decide to go in this direction).

It is better to keep the reference type as generic as possible to allow changing of the
concrete implementation without breaking the code, but sometimes, we might need to
group objects together, but execute different code depending of their types. Remember
the Performer hierarchy mentioned in the previous chapter? We're going to make use of
these types here to show you how to use these operators. In case you do not want to go
back to the previous chapter to see the hierarchy, 6-1 here it is again in Figure 6-1, but
with a twist: we added an extra class named Graphician, which implements the Artist
interface and extends the Human class.!

<<interface>> |
Artist
e e

r . <<interface>> |
| Graphician | ! Musician

S et

. <<interface>> !
Actor

i

e
Figure 6-1. The Performer hierarchy

In the following code sample, an object of type Musician and one of type Graphician
are created and both are added into a list containing references of type Artist. We can
do this because, both types implement the interface Artist.

package com.apress.bgn.ché;
import com.apress.bgn.ch4.hierarchy.*;

import java.util.Arraylist;
import java.util.Llist;

'The implementation of the new class is not relevant for this chapter, so it won’t be detailed here.

211

CHAPTER6 OPERATORS

public class OperatorDemo {

public static void main(String... args) {
List<Artist> artists = new ArraylList<>();

Musician john = new Performer("John", 40, 1.91f, Gender.MALE);
List<String> songs = List.of("Gravity");

john.setSongs(songs);

artists.add(john);

Graphician diana = new Graphician("Diana", 23, 1.62f, Gender.
FEMALE, "mac0Os"); artists.add(diana);

for (Artist artist : artists) {
if (artist instanceof Musician) { \\ (*)
Musician musician = (Musician) artist; \\(**)

System.out.println("Songs: " + musician.getSongs());
} else {
System.out.println("Other Type: " + artist.getClass());

The line marked with (*) shows how to use the instanceof operator. This operator
tests whether the object is an instance of the specified type. (class, subclass or interface).
Itis used in writing conditions to decide which code block should be executed.

The line marked with (**) does an explicit conversion of an reference. Since the
instanceof operator helped figure out that the object the reference points to is of type
Musician, we can now convert the reference to the proper type so methods of class
Musician can be called.

But what happens if an explicit conversion fails? For this we try to convert the
previously declared Graphician reference to Musician. So, we’ll add the following line.

Musician fake = (Musician) diana;

212

CHAPTER6 OPERATORS

The compiler won’t complain, but this does not change the fact that Graphician
has no relation to the Musician type, so the code will not run, and a special exception
is thrown in the console to tell you what went wrong. The error message printed in the
console is explicit and is depicted in the next log snippet.

Exception in thread "main" java.lang.ClassCastException:
chapter.six/com.apress.bgn.ch6.Graphician cannot be cast to
chapter.four/com.apress.bgn.ch4.hierarchy.Musician

at chapter.six/com.apress.bgn.ch6.0peratorDemo.mainOperatorDemo. java:24

The message clearly states that the two types are not compatible and the package
and module names are included.

But explicit conversion is not limited to reference types, it works for primitives too.
Any variable of a type with values in a smaller interval can be converted to a type of
a bigger interval, without explicit conversion. But the reverse is possible too by using
explicit conversion, but if the value is too big, bits is lost and the value is... unexpected.
Look at the following examples of conversions between byte and int.

[jshell> byte b =

b ==>

| created variable b : byte
[jshell> int i = 10;
i==>10

| created variable i : int

assigned to i : int

[jshell> b =
Exrror:

| incompatible types: possible lossy conversion from int to byte
| b=1
|

A

213

CHAPTER6 OPERATORS

jshell> b = (byte) i

[
b ==> 2 // all good, because value is in byte interval
| assigned to b : byte

[jshell> i = 300000
i ==> 300000
| assigned to i : int

[jshell> b = (byte) i
b ==> -32 // oops! value outside byte interval
| assigned to b : byte

So, as a general rule, use explicit conversion to widen the scope of a variable, not to
narrow it, as narrowing it can lead to unexpected results.

Numerical Operators

This section groups all operators that are mostly used on numerical types. The numerical
operators you know from math: +, -, /. Comparators are found in programming too, but
they can be combined to obtain different effects.

Unary Operators

Unary operators require only one operand, and they affect the variable they are
applied to.

Incrementors and Decrementors

In Java(and some other programming languages) there are unary operator called
incrementors (++) and decrementors (- -). These operators are placed before or after a
variable to increase or decrease its value by 1. They are usually used in loops as counters
to condition the termination of the loop. When they are placed before the variable, they
are called prefixed and when are placed after it they are called postfixed.

When they are prefixed, the operation is executed on the variable, before the variable
is used in the next statement. The following code sample tests this affirmation.

214

CHAPTER6 OPERATORS
package com.apress.bgn.ché;

public class UnaryOperatorsDemo {
public static void main(String... args) {
inti = 1;
int j = ++1;

System.out.println("j is "+ j + ", i is " + i);

The expected result of the preceding code is that j=2, because the value of the i
variable is modified to 2, before it is assigned to j. Thus, the expected outputis j is 2,
iis 2.

When they are postfixed, the operation is executed on the variable, after the variable
is used in the next statement. The following code sample tests this affirmation.

package com.apress.bgn.ché6;

public class UnaryOperatorsDemo {
public static void main(String... args) {
i=1;
j o= i+4;
System.out.println("j is

+j+ ", 1is " +1);

The expected result of the preceding code is that j=1, because the value of the i
variable is modified to 2, after it is assigned to j. Thus, the expected outputis j is 1,
iis 2.

The decrementor operator can be used in a similar manner, the only effect is that the
variable is decreased by 1. Try to modify the UnaryOperatorsDemo to use the - - operator
instead.

Sign Operators

Mathematical operator + is used on a single operator to indicate that a number is
positive(redundant and mostly never used). So basically,

int i = 3;

215

CHAPTER 6 OPERATORS
Is the same as
int 1 = +3;
Mathematical operator - declares negative numbers.

[jshell> int i = -3
l ==>) -3
| created variable i : int

Or it negates an expression.

[jshell> int i = -3
i==>-3
| created variable i : int

[Jshe11> int j=-(1i+4)

J ==)>

| created variable j : int

As you can see in the example, the result of the (i + 4)is 1, becausei = -3,

but because of the - in front of the parentheses, the final result that is assigned to the j
variable is -1.

Negation Operator

There are two more unary operators, and their role is to negate variables. Operator !
applies to boolean variables, and it is used to negate them. So, true becomes false and
false becomes true.

[jshell> boolean t = true
t ==> true
| created variable t : boolean

[jshell> boolean f =
f ==> false
| created variable f : boolean

[jshell> boolean t2 = !f
t2 ==> true

| created variable t2 : boolean

216

CHAPTER 6

Binary Operators

Let’s start with the ones you probably know from math.

e +adds two variables

OPERATORS

[jshell> int i =
i==>14
| created variable i : int

[jshell> int j =
j==>6
| created variable j : int

[Jshell> int k =1+ j

k ==>

| created variable k : int
[jshell> int i =i + 2

i==>6

| modified variable i : int

| update overwrote variable i : int

The last statement int i = 1 + 2 has the effect of incrementing the value of
i with 2 and there is a little redundancy there. That statement can be written
without mentioning i twice, because its effect is to increase the value of i
with 2. This can be done by using the += operator, which is composed of the
assignment and the addition operator. The optimal statementis i += 2.

The + operator can also be used to concatenate String instances, or String
instances with other types. The JVM decides how to use the + operator
depending on the context. Let’s look at the following example.

package com.apress.bgn.ché6;

public class ConcatenationDemo {
public static void main(String... args) {

int i1 = 0;
int i2 = 1;
int i3 = 2;

217

CHAPTER6 OPERATORS

System.out.println(il + i2 + i3);
System.out.println("Result1 = " + (i1 + i2) + i3);
System.out.println("Result2 = " + i1 + i2 + i3);
System.out.println("Result3 = " + (i1 + i2 + i3));

}
}
If the preceding code executed the following is displayed in the console.
1. 3
2. Result1l = 12
3. Result2 = 012
4. Result3 =3
I'll explain.

218

— Theresultin line 1 can be explained as follows: because all

operands are of type int JVM adds the terms as normal and the
println function prints this result.

The result in line 2 can be explained as follows: parentheses
were added to isolate the addition of two terms (i1+i2).
Because of this, the JVM executes the addition between the
parentheses as a normal addition between to int terms. But

after that, what we are left with is "Result1 = " + 1 + 13, and
this operation includes a String operand, which means the +
operator must be used as a concatenation operator, because

adding a number with a text value does not work otherwise.

The result in line 3 should be obvious at this time; we have three
int operands, and a String operand, and thus the JVM decides
that the context of the operation cannot be numeric, so concat-
enation is required.

The result in line 4 can be explained in a similar way as line 2;
the parentheses are used to ensure that the context of the
operation is numeric, and thus the three operands are added.

CHAPTER6 OPERATORS

This is a typical example to show how JVM decides the context for operations
involving the + operator that you might find in other Java tutorials as well.
But the int variables can be replaced with float or double variables and the
behavior is similar.

- subtracts two variables, or subtracts a value from a variable. The
following shows how this operator and the -= operator, which is
composed of the assignment and the subtraction operator, are used.

[jshell> int i = 4;
i==>14
| created variable i : int

[Jshell> int j =

J=
| created variable j : int

[Jshe11> int k =1 -3

k ==>

| created variable k : int
[jshell> int i = 4

i==>4

| modified variable i : int

| update overwrote variable i : int

jshell> i = 1

[3;
i==>1
|

assigned to i : int

1l
S~

[jshell> int i
i==>4

| modified variable i : int

| update overwrote variable i : int

[jshell> i -=3
$9 ==

| created scratch variable $9 : int

219

CHAPTER6 OPERATORS

220

* multiplies two variables, or multiplies a value with a variable. It
is used in similar statements as + and -, and there is a composed
operator *= that can be used to multiply the value of a variable and
assign it on the spot.

[jshell> int i =
i==>14
| created variable i : int

[jshell> int j =
jo==>2
| created variable j : int

[Jshell> int k = i*j
k =

| created variable k : int

[jshell> int i = 4;

i==>4

| modified variable i : int

| update overwrote variable i : int

[jshell> i =i * 3
i==>12
| assigned to i : int

[jshell> int i = 4

i==>1

| modified variable i : int

| update overwrote variable i : int

[jshell> i *= 3
$7 ==> 12
| created scratch variable $7 : int

CHAPTER6 OPERATORS

o /divides two variables, or divides a value by a variable. It is used in
similar statements as + and -, and there is a composed operator /=
that can be used to divide the value of a variable and assign it on the
spot. The result of a division is named quotient and it is assigned to
the variable on the left side of the assignment sign("="). When the
operands are integers, the result is an integer too, and the remainder
is discarded.

[jshell> int i =
i==>14
| created variable i : int

[jshell> int j =
jo==>2
| created variable j : int

[Jshell> int k =17/ 73

k ==>

| created variable k : int
[jshell> int i = 4

i==>14

| modified variable i : int

| update overwrote variable i : int

[jshell> int i =1/ 3

i==>1

| modified variable i : int

| update overwrote variable i : int

[jshell> int i = 4

i==>4

| modified variable i : int

| update overwrote variable i : int

[jshell> i /=3
$7 ==> 1
| created scratch variable $7 : int

221

CHAPTER6 OPERATORS

e %isalso called the modulus operator divides two variables, but
the result is the remainder of the division. The operation is called
modularization and there is also a composed operator %= that is used
to divide the value of a variable and assign the remainder on the spot.

[jshell> int i =
i==>14
| created variable i : int

[jshell> int j =
j ==>) 3
| created variable j : int

[Jshell> int k =1 7% j
k =
| created variable k : int

[jshell> int i = 4

i==>4

| modified variable i : int

| update overwrote variable i : int

[jshell> i =i % 3
i==>1
| assigned to i : int

[jshell> int i
i==>4
|
|

I
~

modified variable i : int
update overwrote variable i : int

[jshell> i %= 3
$7 ==> 1
| created scratch variable $7 : int

The modulus operator returns the remainder, but, what happens when the operands
are real numbers? And what if the remainder is a real number with an infinite numbers
of decimals after the decimal point?

222

CHAPTER6 OPERATORS
package com.apress.bgn.ché;

public class ModulusDemo {
public static void main(String... args) {

float f = 1.9f;

float g = 0.4f;

float h = f % g;
System.out.println("remainder = " + h);

Well, some rounding is done. The text printed in the console is remainder = 0.29999995
which can be rounded to 0.3, for some cases. But rounding can be dangerous when the data
is used for sensitive operations, like determining the volume of a tumor for a robot to operate
on, or determining the perfect trajectory for a rocket to be sent to Mars. So, rounding can be
problematic, because it causes a loss of precision.

Relational Operators

In certain cases, when designing the solution for a problem, you need to introduce
conditions to drive and control the execution flow. Conditions require the evaluation
of a comparison between two terms using a comparison operator. In this section all
comparison operators used in java is described and code samples is provided. Let’s
proceed.

e ==tests equality of terms. Because in Java a single equals (=) sign
assigns values, a solution needed to be find to test equality, so the
developers just duplicated the “=” operator. We have used for
loops before to depict how to use certain types or statements, even
if they are to be covered only in the next chapter, because the code
samples presented to you should be compliable and runnable. In
the following code sample, you see an example of testing the ==
comparator in searching for value 2 in an array. If the value is found,

the index is printed in the console.
package com.apress.bgn.ch6;

public class ComparisonOperatorsDemo {

223

CHAPTER6 OPERATORS

public static void main(String... args) {
int[] values = {1, 7, 9, 2, 6,};

for (int i = 0; i < values.length; ++i) {
if (values[i] == 2) { \\(¥)
System.out.println("Fount 2 at index:

+1);

}

The condition in the line marked with (*) is evaluated and the
result is a boolean value. When the result is false, nothing is
done, but if the result is true the index is printed. Because the
result is of type boolean, if you make a mistake and instead you
use = instead of ==, the code will not compile. You have to be extra
careful when comparing boolean values though.

The == sign works just fine for primitives; for reference types, you
need to use the equals() method that was covered in Chapter 5.

o I=tests inequality of terms. It is the opposite of the == operator. As an
exercise, modify the previous example to print a message when the
array value is not 2. This operator also works on reference types. But
if you want to test inequality of references values you have to use an
expression similar to: !a.equals(b)

e < and <= have the same purpose as the one you probably learned in
math class. The first one (<) tests if the item on the left of the operator
is less than the one on the right. The next one (<=) tests if the item on
the left of the operator is less or equal to the one on the right. This
operator cannot be used on reference types.

e % and »= have the same purpose as the one you probably learned in
math class. The first one (>) tests if the item on the left of the operator
is greater than the one on the right. The next one (>=) tests if the item
on the left of the operator is greater or equal to the one on the right.
This operator cannot be used on reference types.

224

CHAPTER6 OPERATORS

Almost all numeric operators can be used on variables of different primitive (and
wrapper) types, as they are automatically converted to type that has a wider interval
representation or unboxed to the appropriate type in the case of wrapper types. The
following code reflects a few situations, but in practice, you might need to make
even more extreme decisions that do not always abide to the common-sense rules of
programming or follow good practices.

package com.apress.bgn.ché6;

public class MixedOperationsDemo {
public static void main(String... args) {

byte b = 1;
short s = 2;
int i = 3;
long 1 = 4;
float f = 5;
double d = 6;

int ii = 6;

double resd = 1 + d;
long resl = s + 3;
//etc

if (b <=s) {
System.out.println("byte val < short val");
}

if (i >= b) {
System.out.println("int val >= byte val");
}

if (1 > b) {
System.out.println("long val > byte val");
}

if(d » 1) {
System.out.println("double val > byte val");

225

CHAPTER6 OPERATORS

if(i == i) {
System.out.println("double val == int val");

Make sure that if you are ever in a situation where you need to make shady things
(non-optimal code constructs) like these to test a lot, and think about your conversions
well, especially when floating-point types are involved, because, for example, the
following piece of code can have unexpected results.

package com.apress.bgn.ché6;

public class DecimalPointDemo {
public static void main(String... args) {
float f1 = 2.2f;

float f2 = 2.0f;

float f3 = f1 * f2;

if (f3 == 4.4) {
System.out.println("expected float value of 4.4");

} else {
System.out.println("unexpected value of " + f3);

If you expect the message expected float value of 4.4 to be printed in the console, you
will be surprised. Any IEEE 754 floating-point number representation presents issues
because some numbers that appear to have a fixed number of decimals in the decimal
system actually have an infinite number of decimals in the binary system. So, we cannot
compare floats and doubles using ==. One of the solutions that is easiest to implement is
to use the compare method provided by the wrapper class; in this case, Float.compare.

package com.apress.bgn.ché6;

public class DecimalPointDemo {
public static void main(String... args) {
float f1 = 2.2f;
float f2 = 2.0f;

226

CHAPTER6 OPERATORS

float f3 = f1 * f2;
if (Float.compare(f3,4.4f) == 0) {
System.out.println("expected float value of 4.4");
} else {
System.out.println("unexpected value of " + f3);

Using the previous example, the expected message is now printed in the console:
expected float value of 4.4.

Bitwise Operators

In Java there are a few operators that are used at bit level to manipulate variables of
numerical types. Bitwise operators are used to change individual bits in an operand.
Bitwise operations are faster and usually use less power because of the reduced use of
resources. They are most useful in programming visual applications, games, where color,
mouse clicks, and movements can be quickly determined using bitwise applications.

Bitwise NOT

The ~ operator is sort of a binary negator. It performs a bit-by-bit reversal of an integer
value. Of course, this affects all bits used to represent the value. So, if we declare

byte b1 = 10;

the binary representation is 00001010. The Integer class provides a method named
toBinaryString that can print the binary representation of the previously defined
variable, but it won’t print all the bits, because the method doesn’t know on how many
bits we want the representation on. So, we need to use a special String function to
format the output. The following code snippet prints the b value in binary on 8 bits.

System.out.println("decimal:" + b1);

String str = String.format("%8s", Integer.toBinaryString(b1i & OxFF))
.replace(' ', '0');

System.out.println("binary:’

+ str);

227

CHAPTER6 OPERATORS

If we apply the ~ operator on the b value, the binary value resulted is 11110101. The
fist bit is the sign bit, and value one corresponds to -. So, the number is -11, as displayed
in the following code.

byte b2 = (byte) ~b1;

System.out.println("decimal:" + b2);

String str2 = String.format("%8s", Integer.toBinaryString(b2 & OxFF))
.replace(' ', '0');

System.out.println("binary:" + str2);

In the previous example, you probably noticed this statement:
byte b2 = (byte) ~b1

You are expecting an explanation. The bitwise complement expression operator
requires an operand that is convertible to a primitive integral type, or a compile time
error occurs. Internally, Java uses one or more bytes to represent values. The ~ operator
converts its operand to the int type, so it can use 32-bits when doing the complement
operation; this is needed to avoid loss of precision. That is why an explicit cast to byte is
needed in the previous example.

And because everything is clearer with images, Figure 6-2 shows the effect of the ~ on
the bits of the b1 variable in parallel with its value.

[10 |

Lot [[ofo]o]Jol{1]of1]o]

(ot [{11]fof1]o]1] = [-1]

Sign bit

Figure 6-2. The effect of the operator on every bit

Bitwise AND

The bitwise AND operator is represented by & and what is does is to compare two
numbers bit by bit and if the bits on each position have the value of 1, the bit in the result
is 1. The following code sample, depicts the result of the & operator.

228

CHAPTER6 OPERATORS

package com.apress.bgn.ché;

public class BitwiseDemo {
public static void main(String... args) {
byte b1 = 117; // 01110101
byte b2 = 95; // 01011111

byte result = (byte) (b1 & b2); // 01010101

System.out.println("b1:"+ b1);
System.out.println("b2:"+ b2);

System.out.println("--------- ");
String str = String.format("%8s", Integer.toBinaryString(result &
OxFF))

.replace(’ ', '0');
System.out.println("result:" + result);
System.out.println("binary result:" + str);

We are using the same String.format(..) method to display the bits of the result of
applying the & to the b1 and b2 operators. The preceding code prints the following.

b1:117
b2:95

result:85
binary result:01010101

But the effect of the & operator is seen best in Figure 6-3. The 01010101 value is the
binary representation of number 85.

Lot Jof1]1]1]lof1]of1] = [17]

[b2 |[of1fofe]lefefe]1] = [‘o5]

[resut |[of1]o]1][o]1]o]1] = [85]
Sign bif

Figure 6-3. The effect of the & operator on every bit
229

CHAPTER6 OPERATORS

For practical reasons, the composed operator &= is available in Java, so that the
bitwise AND operation can be done on the same variable on which the result is assigned.

[jshell> byte b1 =
b1 ==> 10
| created variable b1 : byte

[jshell> b1 &= 2
$ ==
|

created scratch variable $2 : byte

Bitwise Inclusive OR

The bitwise OR operator is represented by | and what is does is to compare two numbers
bit by bit and if at least one of the bits is 1, the bit in the result is 1. The following code
sample, depicts the result of the | operator.

package com.apress.bgn.ché6;

public class BitwiseDemo {
public static void main(String... args) {
byte b1 117; // 01110101
byte b2 = 95; // 01011111

byte result = (byte) (b1 | b2); // 01111111

System.out.println("b1:"+ b1);
System.out.println("b2:"+ b2);
System.out.println("--------- ");
String str = String.format("%8s", Integer.toBinaryString
(result & OxFF))

.replace(' ', '0");
System.out.println("result:
System.out.println("binary result:

+ result);
"+ str);

230

CHAPTER6 OPERATORS

We are using the same String.format(..) method to display the bits of the result of
applying the | to the b1 and b2 operators. The preceding code prints the following.

b1:117

b2:95

result: 127

binary result: 01111111

But the effect of the | operator is seen best in Figure 6-4. The 01010101 value is the
binary representation of number 127.

[b1 [[ofa]1]1]of1]o]1] = [117]
[b2 [{of1fof1|[1f1f1]1] = [95]
[resutt [{[0f1 a1 1]1]a]1] = | 127]

Sign bit

Figure 6-4. The effect of the | operator on every bit

For practical reasons, the composed operator | = is available in Java, so that the
bitwise inclusive OR operation can be done on the same variable on which the result is
assigned.

[jshell> byte b1 = 10
b1 ==> 10
| created variable b1 : byte

[jshell> b1 |= 2
$4 ==> 10
| created scratch variable $4 : byte

Bitwise Exclusive OR

The bitwise XOR operator is represented by * and what is does is to compare two
numbers bit by bit and if the values are different, the bit in the resultis 1. The following
code sample, depicts the result of the * operator.

231

CHAPTER 6 OPERATORS
package com.apress.bgn.ché;

public class BitwiseDemo {
public static void main(String... args) {
byte b1 = 117; // 01110101
byte b2 = 95; // 01011111

byte result = (byte) (b1 * b2); // 00101010

System.out.println("b1:"+ b1);
System.out.println("b2:"+ b2);
System.out.println("--------- ");
String str = String.format("%8s", Integer.toBinaryString
(result & OxFF))

.replace(’ ', '0');
System.out.println("result:
System.out.println("binary result:

+ result);

+ str);

We are using the same String.format(..) method to display the bits of the result of
applying the " to the b1 and b2 operators. The preceding code prints the following.

b1:117
b2:95

result: 42
binary result: 00101010

But the effect of the ” operator is seen best in Figure 6-5. The 00101010 value is the
binary representation of number 42.

[ot |[of1]1]1]o]1]o]1] = [147]
[b2 [{of1fof1|[1f1f1]1] = [95]
L]

[resutt [[0fof1]o1]o]1]o] = | 42 |

Sign bit
Figure 6-5. The effect of the " operator on every bit

232

CHAPTER6 OPERATORS

For practical reasons, the composed operator "= is available in Java, so that the bitwise
exclusive OR operation can be done on the same variable on which the result is assigned.

[jshell> byte b1 = 10
b1 ==> 10
| created variable b1 : byte

[jshell> b1 "= 2
$6 ==> 8
| created scratch variable $6 : byte

Logical Operators

When designing conditions for controlling the flow of the execution of a program,
sometimes there is need for complex conditions to be written, composed conditions
constructed from multiple expressions. There are four operators that are used to construct
complex conditions; two of them are bitwise operations that can be reused: &(AND)

and | (OR); but they require evaluation of all the parts of the condition. The operators
8&(AND) and | | (OR) have the same effect as the other ones, but the difference is they do
not require evaluation of all the expression, which is why they are also called shortcut
operators. To explain the difficult behavior of these operators, there is a typical example.
Basically, we declare a list of ten terms (some of them null) and a method to generate a
random index, used to select an item from the list. Then we test the selected element from
the list to see if it is not null and equal to an expected value. If both conditions are true,
then a message is printed in the console. Let’s start with the first example.

package com.apress.bgn.ché6;

import java.util.Arraylist;
import java.util.Llist;
import java.util.Random;

public class LogicalDemo {
static List<String> terms = new Arraylist<>() {{
add("Rose");
add(null);
add("River");
add("Clara");

add("Vvastra");
233

CHAPTER6 OPERATORS

add("Psi");
add("Cas");
add(null);
add("Nardhole");
add("Strax");

I3

public static void main(String... args) {
for (int i = 0; 1 < 20; ++i) {
int rnd = getRandomNumber();
String term = terms.get(rnd);
System.out.println("Generated index: " + rnd);
if (term != null & term.equals("Rose")) { \\(*)
System.out.println("Rose was found");

}

private static int getRandomNumber() {
Random r = new Random();
return r.nextInt(10);

To make sure we get the expected result, we repeat the operation of selecting a
random term 20 times. In the line marked with (*), the & composes the two expressions.
So, the text "Rose was found" should be printed in the console only if the value of the
termvariable is not null and equal to Rose. So, when the preceding code is run, expect to
see something like this in the console.

Generated index: 8
Exception in thread "main" java.lang.NullPointerException
Generated index: 4
at chapter.six/com.apress.bgn.ché6.LogicalDemo.mainLogicalDemo. java:57
Generated index: 7

But, think about it like this: if the termis null, should we even evaluate the equality
to “Rose”, especially since calling a method on a null object causes a runtime error?

234

CHAPTER6 OPERATORS

Obviously not, which is why the & is not suitable for this case. If the term is null, it fails
the first condition; there is no point in evaluating the second. And so, enter the 8&
shortcut operator that does exactly this. This works because when using the logical AND
operator, if the first term is false, it does not really matter what the second term is equal
to, the result is always false. So, we can correct the previous code sample as follows.

package com.apress.bgn.ché6;

import java.util.Arraylist;
import java.util.list;
import java.util.Random;

public class LogicalDemo {
static List<String> terms = new Arraylist<>() {{
add("Rose");
add(null);

3

public static void main(String... args) {
for (int i = 0; 1 < 20; ++1) {
int rnd = getRandomNumber();
String term = terms.get(rnd);
System.out.println("Generated index: " + rnd);
if (term != null && term.equals("Rose")) { \\(*)
System.out.println("Rose was found");

}

private static int getRandomNumber() {
Random r = new Random();
return r.nextInt(10);

So, when the preceding code is executed, no exception is thrown, because if the term
is null, the second condition is not evaluated.

235

CHAPTER6 OPERATORS

Let’s modify the previous code sample, but this time, let’s print the message if we
find a null or if we find “Rose”.

package com.apress.bgn.ché6;

import java.util.Arraylist;
import java.util.Llist;
import java.util.Random;

public class LogicalDemo {
static List<String> terms = new Arraylist<>() {{
add("Rose");
add(null);

I3

public static void main(String... args) {
for (int i = 0; 1 < 20; ++1) {
int rnd = getRandomNumber();
String term = terms.get(rnd);
System.out.println("Generated index: " + rnd);
if (term == null | term.equals("Rose")) { \\(*)
System.out.println("Rose was found");

}

private static int getRandomNumber() {
Random r = new Random();
return r.nextInt(10);

If we run the previous code, the use of | throws a Nul1lPointerException because
this operator requires both expressions to be evaluated. So, if termis null, calling
.equals(...) causes the exception to be thrown. So, to make sure that the code works
as expected, the | must be replaced with | |, which shortcuts the condition and does not
evaluate the second expression. This works because when using the logical OR operator,
if the first term is true, it does not really matter what the second term is equal to; the
result is always true. We'll leave that as an exercise for you.

236

CHAPTER6 OPERATORS

Of course, conditions can be made up from more than one expression and more
than one operator, whether it is & or | |. Take a look at the following examples.

package com.apress.bgn.ché;

import java.util.Arraylist;
import java.util.list;
import java.util.Random;

public class LogicalDemo {
static List<String> terms = new Arraylist<>() {{
add("Rose");
add(null);

I3

public static void main(String... args) {
for (int i = 0; i < 20; ++i) {
int rnd = getRandomNumber();
String term = terms.get(rnd);
if (xnd == 0 || rnd == 1 || rnd <= 3) {
System.out.println(znd + "

: this works...");

}

if (znd > 3 8% rnd <=6 || rnd < 3 8& rnd > 0) {
System.out.println(rnd + ": this works too...");

}

private static int getRandomNumber() {
Random r = new Random();
return r.nextInt(10);

Beware of conditions that become too complex, make sure you cover that piece
of code with a lot of tests. When writing complex conditions it is possible that some
expressions become redundant, and Intelli] IDEA and other smart editors display

warnings of dead code on expressions that are redundant and unused.
237

CHAPTER6 OPERATORS

Shift Operators

The shift operators are operators working at bit level. Because moving bits around is a
sensitive operation, the only requirement of these operands is for arguments to be integers.
The operand to the left of the operator is the number that is shifted, and the operand to the
right of the operator is the number of bits that is shifted. There are three shift operators in
Java, and each of them can be composed with the assignment operator to do the shifting and
assign the result to the original variable on the spot. Let’s analyze each of them separately.

o <« shiftleft. Given a number represented in binary, this operator
shifts bits to the left. Let’s look at the following piece of code.

public class ShiftDemo {
public static void main(String... args) {
byte b1 = 12; // 00001100
byte result = (byte) (b1 << 3);
str = String.format("%8s", Integer.
toBinaryString(result & OxFF))
.replace(' ', '0');
System.out.println("result: " + result); // 01100000

}

When bits are shifted to the left, the remaining positions are filled
with 0. Also, the number becomes bigger, and the new value is

its old value multiplied with —2%, where N is the second operand.
When the preceding code is executed, the following output is
printed in the console.

b1: 12
binary result: 00001100
result: 96

binary result: 01100000

The preceding code can be written like this: b <<= 3, using the
composed operators, without the need to declare another variable.

So, the result is 12 * 23. The way that the bits shifted is shown in
Figure 6-6.

238

CHAPTER6 OPERATORS

12 |

196 |

(b1 |[o]o]o |o [1 | [o]o]
(s3] [0 1 o]0 o o]0]

Sign b

Figure 6-6. The effect of the « operator

» > shiftright. Given a number represented in binary, this operator
shifts bits to the right. Let’s look at the following piece of code.

public class ShiftDemo {
public static void main(String... args) {
byte b1 = 96; // 01100000
byte result = (byte) (b1 >> 3);
str = String.format("%8s", Integer.
toBinaryString(result & OxFF))
.replace(' ', '0');
System.out.println("result: " + result); // 00001100

}

When bits are shifted to the right, the remaining positions are
filled with 0 if the number is positive. If the number is negative,
the remaining positions are replaced with 1. This is done to
preserve the sign of the number. Also, the number becomes
smaller, and the new value is its old value divided by —2", where N
is the second operand. When the preceding code is executed, the
following output is printed in the console.

b1: 96
binary result: 01100000
result: 12

binary result: 00001100

The preceding code can be written like this: b >>= 3, using
the composed operators, without the need to declare another

variable.

239

CHAPTER6 OPERATORS

So, the result is 96 / 2°. And the way that the bits shifted for a
positive number and a negative number is displayed in Figure 6-7.

b1 |[o]1 I__1_.]o].[‘o[o]o[o| = [o6]
[bm>3][oJoo o)1 [*]o]o] - [F2]
| b1 ||1|1]_1|.1][.o.‘[0|o.[0| = |-16 |
s [[1]o] - [=2]

Sign b4

Figure 6-7. The effect of the » operator

240

»>> unsigned shift right. Also called logical shift. Given a number
represented in binary, this operator shifts bits to the right, together
with the sign bit, and the remaining positions are replaced with zero.
This is why, the result is always a positive number. Let’s look at the
following piece of code.

public class ShiftDemo {
public static void main(String... args) {
byte b1 = -16; // 11110000
byte result = (byte) (b1 >>> 3);
str = String.format("%8s", Integer.
toBinaryString(result & OxFF))
.replace(' ', '0");
System.out.println("result: " + result); // 00011110

}

When the preceding code is executed, the following output is
printed in the console.

b1: -16
binary result: 11110000
result: 30

binary result: 00011110

CHAPTER6 OPERATORS

The preceding code can be written like this: b >>>= 3, using the
composed operators, without the need to declare another variable.

And the way that the bits shifted is displayed in Figure 6-8.

Lot [[1]1]1 |1j|? !0 [o]o] = [-16]
[ee=3][oTo o][1T1T1]o] = [30]

S bt

Figure 6-8. The effect of the > > > operator

As all bitwise operators, shifting operators promote char, byte, or short type
variables to int, which is why an explicit conversion is necessary. As you have probably
noticed, shifting bits on negative numbers is tricky, it is easy for the resulted number to
be outside the interval of allowed values for a type, and an explicit conversion can lead
to loss of precision or serious anomalies. So, why use them? Because they are fast. Make
sure to test intensively when using shifting operators.

The Elvis Operator

The Elvis operator is the only ternary operator in Java. Its function is equivalent to a
java method that tests a condition and depending of the outcome, returns a value. The
following is a template for the Elvis operator.

variable = (condition) ? val1 : val2
The following if statement is equivalent.
variable = methodName(..)

type methodName(..) {
if (condition) {
return vali;
} else {
return val2;

The reason this operator is called the Elvis operator is because the question mark
resembles Elvis Presley’s hair, and the column resembles the eyes. Let’s see it in action.
241

CHAPTER6 OPERATORS

==)>) 4

[jshell> int a = 4
a
| created variable a : int

[jshell> int result
result ==> 1

a>4?3:1;

| created variable result : int

[jshell> String a2 = "test"
a2 ==> "test"
| created variable a2 : String

[jshell> var a3 = a2.length() > 3 ? "hello": "bye-bye"
a3 ==> "hello"
| created variable a3 : String

This operator is practical when you have a simple if statement that contains only one
expression per branch, because using this operator you can compact the whole thing in
one expression, one line of code. Make sure that when using it, the readability of the code
is improved, because from a performance point of view, there is no difference between an
if statement and the equivalent Elvis operator expression. Another advantage of using the
Elvis operator is that the expression can initialize a variable in a single in-line statement.

Summary

In this chapter, you learned that
o Java has a lot of operators, simple and composed.
o Bitwise operators are fast, but dangerous.
o The + operator does different things in different contexts.

e Java has a ternary operator that accepts three operands: a boolean
expression and two objects of the same type. The result of the
evaluation of the boolean expression decides which operand is the
result of the statement.

The purpose of this chapter is to make you familiar with all the operators that are
used throughout the book, to help you understand the provided solutions, and even to
design and write your own.

242

CHAPTER 7

Controlling the Flow

The previous chapters covered ways to create statements and which operators to use.

Sometimes, elements of logic were added to make the code runnable for you. This
chapter is dedicated to explain how to manipulate the execution of your code using
fundamental programming—conditional and repetitive statements.

A solution and an algorithm can be represented using flowcharts. Most of the
programming that we've done until this chapter contained declaration and printing
statements—simple one-step statements. Take the following piece of code.

package com.apress.bgn.ch7;
public class Main {

public static void main(String... args) {
String text = "sample";
System.out.println(text);

}

If we were to design a flowchart for it, the schema would be simple and linear, no
decision and no repetition, as depicted in Figure 7-1.

,/’/- Declare a ,/”

L
/ Display a /

Figure 7-1. Simple flowchart sample

© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_7

243

CHAPTER 7 CONTROLLING THE FLOW

But resolving real-life problems requires often a more complicated logic than that,
so more complicated statements are necessary. Before getting into that, let’s describe the
components of a flowchart, because they will be used a lot during this chapter. Table 7-1
lists flowchart elements.

Table 7-1. Flowchart Elements

Shape Name Scope
[] Terminal Indicates beginning or end of a program, and contains a
text relevant to its scope.
o Flowline Indicates the flow of the program, the order of operations.
— Input/Output Indicates declaration of variables and outputting values.
Process Simple process statement: assignment, change of values,
and so forth.
<> J >, Decision Shows a conditional operation that decides a certain path
of execution.
1 Predefined Process This element indicates a process defined else-where.
O On-page Connector This element is usually labeled and indicates the
continuation of the flow on the same page.
U 0Off-page Connector This element is usually labeled and indicates the
continuation of the flow on a different page.
™ Comment (Or When a flow or an element requires extra explanation it is
annotation) introduced using this type of element.

The flowchart elements presented in this table are pretty standard; you will probably
find very similar elements used in any programming course or tutorial. After this
consistent introduction, it is only fit to get into it.

if-else Statement

The most simple decisional flow statement in Java is the if-else statement. (probably in
other languages too) You've probably seen the if-else statement in code samples in the
previous chapters. There was no way to avoid it, because providing runnable code that

244

CHAPTER 7 CONTROLLING THE FLOW

encourages you to write your own is important. But in this section the focus is strictly on
this type of statement.

Let’s imagine this scenario: we run a Java program with a numeric argument
provided by the user. If the number is even, we print EVEN in the console; else, we print
0DD. The flowchart matching this scenario is depicted in Figure 7-2.

/ Read a

- e
then — iga . else
~~._even ’

. /S Decar 7
/ Even: / / oo/

Figure 7-2. if-else flowchart sample

?
>

\
]
J

The condition is evaluated to a boolean value, if the result is true the statement
corresponding to the if branch is executed, if the result is false, the statement
corresponding to the else branch is executed.

The Java code that implements the process described by this flowchart is depicted in
the following code snippet.

package com.apress.bgn.ch7;
public class IfFlowDemo {

public static void main(String... args) {
//Read a
int a = Integer.parselnt(argso);

if (a %2 ==0) { // is even
//Display EVEN
System.out.println("EVEN");

245

CHAPTER 7 CONTROLLING THE FLOW

} else {
//Display ODD
System.out.println("0DD");

To run this class with different arguments, you must create an Intelli] IDEA launcher
and add your argument in the Program arguments text field, as explained at the
beginning of this book. Each Java statement in the previous code snippet was paired
with a comment matching the flowchart element to make the implementation clear.
The fun thing is that not both branches of an if statement are mandatory. Sometimes
you want to print something if a value matches a condition, but you are not interested
in what happens otherwise. For example, given a user provided argument, we want to
print a message if the number is negative, but we are not interested in printing or doing

anything else if the number is positive. The flowchart for that is depicted in Figure 7-3.

~~ Read a _~

then — isa ~~_

’—(Hx negative >
M
/" Display /

/ “Negative”

Figure 7-3. if flowchart sample, missing the else branch

And the Java code looks like this:
package com.apress.bgn.ch7;
public class IfFlowDemo {

public static void main(String... args) {
//Read a
int a = Integer.parselnt(argso);

246

CHAPTER 7 CONTROLLING THE FLOW

if (a <0) {
System.out.println("Negative");

}

}

And in the same way that the statement can be made simple, in the same way;, is
we need it, we can link more if-else statements together. Let’s consider the following
example: the user inserts a number from 1 to 12, and we have to print the season the
month with that number corresponds to. How would the flowchart look like? Do you
think Figure 7-4 fits the scenario?

/" Display
“Winter”

_end J
Figure 7-4. Complex if-else flowchart sample

Looks complicated, right? Wait until you see the code matching that diagram, that is

depicted in this next code snippet.

247

CHAPTER 7 CONTROLLING THE FLOW
package com.apress.bgn.ch7;

public class SeasonDemo {
public static void main(String... args) {
//Read a
int a = Integer.parseInt(args[0]);

if(a == 12 || (a>=1 8&& a<= 2)) {
System.out.println("Winter");
} else {
if (a>2 & a <=5) {
System.out.println("Spring");
} else {
if (a>5 && a <= 8) {
System.out.println("Summer");
} else {
if (a>8 &&% a <= 11) {
System.out.println("Autumn");

} else {
System.out.println("Error");
}
}
}
}
}

Looks ugly, right? But, fortunately, Java provides a way to simplify it, especially
because it makes no sense having so many else blocks that only contain another if
statement. The simplified code connects the else statements with the contained 1 f(s)
statements. And the code ends up looking like the following code snippet.

package com.apress.bgn.ch7;

public class SeasonDemo {
public static void main(String... args) {
//Read a
int a = Integer.parselnt(argso);

248

CHAPTER 7 CONTROLLING THE FLOW

if (a==12 || (a»>=18% a<=2)) {
System.out.println("Winter");

} else if (a > 2 && a <= 5) {
System.out.println("Spring");

} else if (a > 5 &% a <= 8) {
System.out.println("Summer");

} else if (a > 8 8% a <= 11) {
System.out.println("Autumn");

} else {
System.out.println("Error");

Any argument given by the user that is not in the [1,12] causes the program to print
Error. You can test it for yourself if you want by modifying your Intelli] IDEA launcher.
The elements to focus on are underlined in Figure 7-5.

5 NN] Run/Debug Configurations 07 main)
N SeasorDemo ~ B & G Git
| * e BR & - L3 Name: SeasonDemo Edit Canfigurations...
| v & Application . . - Kl Save 'SeasonDemo' Configuration
| LogicalDemo Conf Code C g Logs
Leg s
i i _ LogicalDemo
| Main class: com.apress.bgn.ch7.SeasonDemo ShiftDemo
| : * Main
HFlgwhemo VM options: IfFlowDemo
SeasonDemo
» & Templates | Program arguments: -5

|
| Working directory: fUser i ess/workspac: -bgn n
|
| Environmant variables:
|
i
: Use classpath of module: %3 chapter07_main i
| Include dependencies with "Provided" scope

JRE: Default {11 - SDK of 'chapterd7_main’ module) n

Sharten command line: user-local default; none - [ava [options] classname (arge i

Enable capturing form snapshots
* Before launch: Build, Activate tool window
“, Build
+
Show this page 8 Activate tool window
? Concel | Apply

Figure 7-5. Intelli] IDEA launcher and parameters

249

CHAPTER 7 CONTROLLING THE FLOW

switch Statement

When a value requires different actions for a fixed set of values, the if might get more
complex, the more the set of values increases. In this case the more suitable statement
is the switch statement. Let’s look at the code first, and then check what more can be
improved.

package com.apress.bgn.ch7;

public class SeasonSwitchDemo {
public static void main(String... args) {
//Read a
int a = Integer.parselnt(args[o0]);

var season = "";
switch (a) {
case 1:

season = "Winter";

break;
case 2:
season
break;
case 3:
season
break;
case 4:
season
break;
case 5:
season
break;
case 6:

"Winter";

"Spring";

"Spring";

"Spring";

season
break;
case 7:
season
break;

"Summer";

"Summer";

250

CHAPTER 7 CONTROLLING THE FLOW

case 8:
season
break;
case 9:
season
break;
case 10:

"Summer";

"Autumn";

season = "Autumn";

break;

case 11:

season = "Autumn";

break;

case 12:

season = "winter";

break;

default:
System.out.println("Error");

}

System.out.println(season);

}

Hm... that does not look very practical, at least not for this scenario. Before showing
how the switch statement can be written differently, let’s explain the structure and logic
of it first. The general template of a switch statement is

switch ([onvar]) {
case [option]:
[statement;]
break;

default:
[statement;]

251

CHAPTER 7 CONTROLLING THE FLOW

The terms in square brackets are detailed in the following list.

o [onvar] is the variable that is tested against the case statements
to select a statement. It can be of any primitive type, enumerations
and starting with Java 7, String. Clearly the switch statement is not
limited by conditions evaluated to boolean results, which allows for a
lot of flexibility.

o case [option]isa value the variable is matched upon to make a
decision regarding the statement to execute. A case as the keyword
states.

o [statement] is a statement or a groups of statements to execute
when [onvar] == [option]. Considering that there is no
else branch, we have to make sure that only the statement(s)
corresponding to the first match is executed, which is where the
break; statement comes in. The break statement stops the current
execution path and moves the execution point to the next statement
outside the statement that contains it. I'll cover it later in the chapter.
Without it, after the first match, all subsequent cases are traversed,
and statements corresponding to them are executed.

So, if we execute the preceding program and we provide number
7 as an argument, the text Summer is printed. But if the break
statements for case 7 and 8 are commented, the output changes to
Autumn.

o default [statement;] is a statement that is executed when no
match on a case has been found, the default case does not need
a break statement. If the previous program is run with any number
outside the [1-12] interval, Exror is printed because the default
statement is executed.

Now that you understand how switch works, let’s look at how we can reduce the
previous statement. The month example is suitable here, because it can further be
modified to show how the switch statement can be simplified, when a single statement
should be executed for multiple cases. In our code, writing each assignment statement
three times is a little redundant. switch can be written in a different way to avoid that by
grouping the cases. The code is depicted next.

252

CHAPTER 7

package com.apress.bgn.ch7;

public class SeasonSwitchDemo {

public static void main(String... args) {
//Read a
int a = Integer.parselnt(argso);

var season = "";
switch (a) {

}

case 1:
case 2:
case 12:

season = "winter";

break;
case 3:
case 4:
case 5:
season
break;
case 6:
case 7:
case 8:

"Spring";

season

"Summer";
break;
case 9:
case 10:
case 11:
season = "Autumn";
break;
default:
System.out.println("Error");

System.out.println(season);

}

CONTROLLING THE FLOW

253

CHAPTER 7 CONTROLLING THE FLOW

The grouping in this case represents the alignment of the cases that require the same
statement to be executed, and writing it only once in the last one. This still looks a little
weird, but this is the only way to reduce the statement repetition. The behavior in the
previous case is possible because each case without a break statement is followed by the
next case statement.

In Java 7, the switch statement started supporting String values. The main
problems with switch supporting String values is that there is always a risk of
NullPointerExceptions being thrown, because the equals method is used to test
matching of the items, and the variable used in the switch statement can be null. Also,
because equals is used, the comparison is case sensitive. If we modify the previous
example and ask the user for a text representing the month, and use switch to decide the
season to print, unless we use the exact text in case options that the user will use when
writing the argument, we won'’t get the expected result.

The code changes to

package com.apress.bgn.ch7;

public class StringSwitchSeasonDemo {
public static void main(String... args) {
//Read a
String a = argso;

var season = "";
switch (a) {
case "january":
case "february":
case "december":
season = "winter";
break;
case "march":
case "april":
case "may":
season = "Spring";
break;

254

CHAPTER 7 CONTROLLING THE FLOW

case "june":

case "july":

case "august":
season = "Summer";
break;

case "september":
case "october":
case "november":
season = "Autumn";
break;

default:
System.out.println("Error");

}

System.out.println(season);

}

If we run the previous program with the "january" argument, the text "winter"
is printed in the console. If we run it with argument "january", the text "Exrror" is
printed in the console. And if we run it with null, a NullPointerException is thrown
in the line where the switch statement begins.

And this is all that can be said about the switch statement. In practice, depending on
the solution you are trying to develop, you might decide to use a combination of if and
switch statements.

Unfortunately because of its peculiar logic and its flexible number of options, it is
difficult to draw a flowchart for the switch statement, but nevertheless I've tried and it’s
depicted in Figure 7-6.

255

CHAPTER 7 CONTROLLING THE FLOW

switch(a)

Case 1,2,12:

season = "summer”_| . 1

T T

Display
season
«»

Figure 7-6. The switch statement flowchart

Looping Statements

Sometimes in programming, we need repetitive steps that involve the same variables.

To write the same statement over and over again to get the job done would be ridiculous.
Let’s take the example of sorting an array of integer values. The most known algorithm
to do this and the one that is taught first in programming courses because it is simple

is called bubble sort. The algorithm compares the elements of an array, two by two and
if they are not in the correct order it swaps them. It goes over the array again and again
until no more swaps are needed. The effects of the algorithm are depicted in Figure 7-7.

256

CHAPTER 7 CONTROLLING THE FLOW

Faeat EHE‘ E@@ Swap since 5> 1
E’ EE\ Swap since 5 > 4
-El IZHE- Swap since 5 > 2
.E] .EE Swap since 5> 3

Pass 2 .El IZ].IEl Swap since 4 > 2
-.IEH—_T_]. Swap since 4 > 3

Pass 3 .lzl E.@ No more swaps needed

Figure 7-7. Bubble sort phases and effect

This algorithm performs two types of loops; one iterates each element of the array
using indexes. And this traversal is repeated until no swaps are necessary. In Java this
algorithm can be written in more than one way using different looping statements. But
we'll get there, let’s take it slow.

There are three types of looping statements in Java.

o for statement
e while statement
e do-while statement

The for looping statement is the most used, but while and do-while have their uses
as well.

for Statements

For is recommended for iterating on objects like arrays and lists that can be counted. For
example, traversing an array and printing each one of its values is as simple as depicted
in the following code sample.

package com.apress.bgn.ch7;

public class ForLoopDemo {
public static void main(String... args) {
int arr[] = {5, 1, 4, 2, 3};

257

CHAPTER 7 CONTROLLING THE FLOW

for (int i = 0; i < arr.length; ++i) {
System.out.println("arr[" + i + "] = " + arr[i]);

}
}

Based on the previous example, a flowchart for the for statement can be drawn and
it is depicted in Figure 7-8. The following code snippet depicts the for loop template.

for ([int_expr]; [condition];[step]){
[code block]

%

| intar(={5.1,4,2,3} |

Display /
arrfi]

Figure 7-8. The for statement flowchart

Each of the terms between square brackets have a specific purpose that is explained

next.
[init_expr] is an initialization expression that sets the initial value
of the counter used by this loop. It ends with ; and is not mandatory,
as the initialization can be done outside the statement, especially if
we are interested in using the counter variable later in the code and
outside the statement. The preceding code can be written like this:

258

CHAPTER 7 CONTROLLING THE FLOW

package com.apress.bgn.ch7;

public class ForLoopDemo {

}

public static void main(String... args) {
int arr[] = {SJ 1, 4, 2, 3};

int i = 0;

for (; i < arr.length; ++i) {
System.out.println("arr[" + i + "] = " + arr[i]);

}

System.out.println("Loop exited with index: " + i);

}

[condition] is the termination condition of the loop, as long as this

condition is evaluated to true, the loop will continue executing.

The condition ends with ; and funny enough, it is not mandatory

either, as the termination condition can be placed inside the code to

be executed repeatedly by the loop. So, the preceding code can be

modified further and written like this:

package com.apress.bgn.ch7;

public class ForlLoopDemo {

public static void main(String... args) {
int arr[] = {5, 1, 4, 2, 3};
int i = 0;
for (; ; ++i) {
if (i »>= arr.length) {

break;

}

System.out.println("arr[" + i + "] = " + arr[i]);
}
System.out.println("Loop exited with index: " + i);
}

259

CHAPTER 7 CONTROLLING THE FLOW

260

[step] is the step expression or increment that increases the counter
on every step of the loop. It should end in ;, but it is often dropped,
and as you probably already expected, it is not mandatory either, as
nothing stops the developer from manipulating the counter inside
the code block. So, the preceding code can also be written like this:

package com.apress.bgn.ch7;

public class ForLoopDemo {
public static void main(String... args) {
int arr[] = {5, 1, 4, 2, 3};
int i = 0;
for (5 ;) {
if (i >= arr.length) {
break;
}
System.out.println("arr[" + i + "] = " + arr[i]);
++1;
}

System.out.println("Loop exited with index:

}

+1);

}

The modification of the counter does not have to be done inside
the code; it can be done in the termination condition, but the
initialization expression and the termination condition must be
modified accordingly to fit the purpose. The code depicted next
has the same effect as all the samples before it.

package com.apress.bgn.ch7;

public class ForLoopDemo {
public static void main(String... args) {
int arr[] = {5, 1, 4, 2, 3};
for (int i = -1; i++ < arr.length -1;) {
System.out.println("arr[" + i + "] = " + arr[i]);

CHAPTER 7 CONTROLLING THE FLOW

System.out.println("Loop exited with index:

}

+1);

The step expression does not have to be an incrementation. It
can be any expression that modifies the value of the counter.
Instead of ++1 or i++, you can use i= i+1, or i=i+3, or even
decrementation if the array of list is traversed starting with a
bigger index. Any mathematical operations that keep the counter
in the boundaries of the type it was declared and within the
indexes range can be used safely.

o [code_block] is a block of code executed repeatedly, in every step
of the loop. If there is no exit condition within this code, this block
of code is executed by as many times as the counter passes the

termination condition.

This is the basic form of the for looping statement, but in Java there are other ways to
iterate a group of values. Let’s say that instead of an array, we have to iterate over a list.

package com.apress.bgn.ch7;
import java.util.list;

public class ForLoopDemo {
public static void main(String... args) {
List<Integer> list = List.of(5, 1, 4, 2, 3);
for (int j = 0; j < list.size(); ++j) {
System.out.println("list[" + j + "] = " + list.get(j));
}
}

The code seems somehow impractical and that is why List<> instances can be
traversed with a different type of for statement that was known as forEach until Java 8.
You will see immediately why, but first let’s look at forEach.

package com.apress.bgn.ch7;

import java.util.list;

261

CHAPTER 7 CONTROLLING THE FLOW

public class ForlLoopDemo {
public static void main(String... args) {
List<Integer> list = List.of(5, 1, 4, 2, 3);
for (Integer item : list) {
System.out.println(item);
}
}

This type of for statement is also called as having enhanced syntax and basically
executes the code block for each item in the collection used in its expression. This means
it works on any implementation of Collection interface and it works on arrays too. So,
the example code is written like this:

package com.apress.bgn.ch7;

public class ForLoopDemo {
public static void main(String... args) {
int arr[] = {5, 1, 4, 2, 3};
for (int item : arr) {
System.out.println(item);

Clearly the best part in this case is that we no longer need a termination condition,
or counter at all. Starting with Java 8, the name forEach is no longer needed for the for
statement with enhanced syntax, because the forEach default method was added to all
Collection extensions. Combine that with lambda expressions and the code to print the
elements of a list becomes

package com.apress.bgn.ch7;
import java.util.Llist;

public class ForLoopDemo {
public static void main(String... args) {
List<Integer> list = List.of(5, 1, 4, 2, 3);
list.forEach(item -> System.out.println(item));
//or

262

CHAPTER 7 CONTROLLING THE FLOW

list.forEach(System.out::println);
}

Pretty neat, ha? But wait, there’s more, it works on arrays too, but a small conversion
to suitable implementation BaseStream is necessary first. But it is provided by the Arrays
utility class that was enriched in Java 8 with methods to support lambda expressions. So
yeah, the code with the arr array can be written (starting in Java) 8 like this:

package com.apress.bgn.ch7;

public class ForlLoopDemo {
public static void main(String... args) {
int arr[] = {5, 1, 4, 2, 3};
Arrays.stream(arr).forEach(System.out::println);

In Java 11, all the preceding examples compile and execute just fine, so use whatever
syntax you prefer most when writing your solutions.

while Statement

The while statement is different from the for statement in that there is not a fixed
number of steps that have to be executed, so a counter is not always needed. The
number of repetitions of a while statement executes depends only on how many times
the continuation condition that controls this number is evaluated to true. So, the generic
template for this statement is depicted in the following listing:

while ([eval(condition)] == true) {
[code block]

}

A while statement does not really require an initialization statement either, as it can
be inside the code block, or outside the statement. The while statement can replace
the for statement, but the advantage of the for statement is that it encapsulates the
initialization, the termination condition and the modification of the counter in a single
block, so it’s more concise. The array traversal code sample can be rewritten using the
while statement; the code is listed next.

263

CHAPTER 7 CONTROLLING THE FLOW
package com.apress.bgn.ch7;

public class WhileLoopDemo {
public static void main(String... args) {
int arr[] = {5, 1, 4, 2, 3};
int 1i=0;
while(i < arr.length){
System.out.println("arr[" + i + "] = " + arr[i]);
++1;

Asyou can see, the declaration and initialization of the counter variable, int i=0;
is done outside the statement and the incrementation of the counter is done inside
the code block to be repeated. Basically at this point, if we design the flowchart for this
scenario, it will look the same as the for statement depicted in Figure 7-9.

And as incredible as it sounds, the [condition] is not mandatory either, as it can be
replaced directly with true. But in this case, you have to make sure that there is an exit
condition inside the block of code that executes at some point; otherwise, the execution
will most likely end with an error. And this condition must be placed at the beginning
of the block of code to prevent the execution of the useful logic in a situation where it
shouldn’t be. For our simple example, we do not want to call System.out.println for an
element with an index outside the array range.

package com.apress.bgn.ch7;

public class WhileLoopDemo {
public static void main(String... args) {
int arr[] = {5, 1, 4, 2, 3};
int 1i=0;
while(true){
if (i »= arr.length) {
break;

}

264

CHAPTER 7 CONTROLLING THE FLOW

System.out.println("arr[" + 1 + "] = " + arr[i]);
++1;

The while statement is best used when we are working with a resource that is not
always online. Let’s say we are using a remote database for our application that is in a
network that is unstable. Instead of giving up trying to save our data after the first timeout,
we could try until we succeed, right? This is done by using a while statement that tries to
initialize a connection object in its code block. And the code looks roughly like this:

package com.apress.bgn.ch7;
import java.sql.*;

public class ConnectionTester {
public static void main(String... args) throws Exception {

Connection con = null;
while (con == null) {

try {
Class.forName("com.mysql.cj.jdbc.Driver");

con = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/sample”, "root", "pass");

} catch (Exception e) {

System.out.println("Connection refused. Retrying in 5 seconds ...");

Thread.sleep(5000);
}
}
// con != null, do something

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("select * from test");

while (rs.next()) {
System.out.println(rs.getInt(1) +

+ 1s.getString(2));
}

con.close();

}

265

CHAPTER 7 CONTROLLING THE FLOW

The problem with this code is that it runs forever; if we want to give up trying after a

certain time, we must introduce a variable that counts the number of tries and then exits

the loop using a break statement.

package com.apress.bgn.ch7;

import java.sql.*;

public class ConnectionTester {

266

public static final int MAX_TRIES = 10;
public static void main(String... args) throws Exception {

int cntTries = 0;
Connection con = null;
while (con == null &&% cntTries < MAX_TRIES) {
try {
Class.forName("com.mysql.cj.jdbc.Driver");
con = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/sample”, "root", "pass");
} catch (Exception e) {
++cntTries;
System.out.println("Connection refused. Retrying in 5 seconds ...");
Thread.sleep(5000);

}

}

if (con != null) {
// con != null, do something
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("select * from test");
while (rs.next()) {
System.out.println(rs.getInt(1) +

+ rs.getString(2));

}

con.close();
} else {

System.out.println("Could not connect!");
}
}

CHAPTER 7 CONTROLLING THE FLOW

So, as a rule of thumb, always make sure there is an exit condition when using
looping statements.

And since we've covered all the statements needed to implement the bubble sort
algorithm depicted in Figure 7-9, let’s see what the code looks like. Be aware that,
this algorithm can be written in many ways, but the following code best matches the
explanation provided earlier. So, while there are elements in the array that are not in the
proper order, the array is traversed again and again and adjacent elements are swapped
to fit the desired order (ascending, in this case).

package com.apress.bgn.ch7;
import java.util.Arrays;

public class BubbleSortDemo {
public static final int arr[] = {5, 1, 4, 2, 3};

public static void main(String... args) {
boolean swapped = true;
while (swapped) {
swapped = false;
for (int i = 0; i < arr.length - 1; ++i) {
if (arr[i] > arr[i + 1]) {
int temp = arr[i];
arr[i] = arr[i + 1];
arr[i + 1] = temp;
swapped = true;

}

}
}
Arrays.stream(arr).forEach(System.out::println);
}

267

CHAPTER 7 CONTROLLING THE FLOW

When run, the code swaps elements of the arr array until they are all in ascending
order, so the last line in the code prints the modified arz:

Ui B W N R

do-while Statement

The do-while statement is similar to the while, with one difference, the continuation
condition is evaluated after executing the code block. This causes for the code block to
be executed at least once, unless there is a an exit condition embedded in it. The generic
template for this statement is depicted in the following listing:

do {
[code block]
} while ([eval(condition)] == true)

Most times statements while and do-while can be easily interchanged, and
sometimes a minimum change of the logic of the code block is needed. For example,
traversing an array and printing the values of its elements can be written using do-while
as well, without changing the code block. Figure 7-9 shows the two implementations side
by side: the while on the left and do-while on the right.

€ WhileLoopDemojava & DoWhileDemo.java
Fimad ¥ 1 Favid
package com.apress.bgn.ch7; 28 package com.apress.bgn.ch7;
S ek] =
* @agthor Iuliana Cosmina 1 % @author Iuliana Cosmina
& since 1.9 33 * since 1.8
. puial.tc class whileLoopDemo { 24k public class DowhileDemo {
£ public static void main{5tring... args) { = public static void main(String... args) {
7 int arrl] = {5, 1, 4, 2, 3} 37 int arr(] =15, 1, 4, 2, 3k
int i=0; 38 int i =0;
Blllﬂfl < arr.length){] T, do {
~ System.owt.printini™arr[* + i + "] = " + arr[il); 41 System out.printin{"arr[" + i + "] =" + arr[il);
++1; b2
} 4 ¥ whil.e (i < arr.length); |
} 44 }
} 15 }

Figure 7-9. while and do-while implementation for printing elements of an array

268

CHAPTER 7 CONTROLLING THE FLOW

The flowchart for these two examples (see Figure 7-10) reveals the different logic
between the two statements.

while do-while
| intarf)={5,1,4,2,3} | | intarf)={5,1,4,2,3} |
_inti=0 | |_inti=0 |

- ! —————

-

{ o~ T
——<__ i<amlength? =
T

o

Display
arr(i]

/—.‘
Display
arrfi]
++j (s 3
s .
i<amrlength?
L _end J

Figure 7-10. Comparison between while and do-while statements flowcharts

The do-while statement works best when the code block must be executed at least
once; otherwise, we evaluate the condition once unnecessarily. Remember the code
sample that was trying to connect to a database that was in an unstable network? Well,
when while was used, the execution started by testing if the connection is not null, but
the connection was not even initialized yet.

Connection con = null;

while (con == null) {
Class.forName("com.mysql.cj.jdbc.Driver");
con = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/sample”, "root", "pass");

269

CHAPTER 7 CONTROLLING THE FLOW

This implementation, although functional, is a little redundant and the logic

is not following programming best practices. More suitable would be a do-while

implementation, one that avoids testing if the con instance is null, considering that it

clearly is, as in the following.

package com.apress.bgn.ch7;

import java.sql.*;

public class DoConnectionTester {

270

public static final int MAX_TRIES = 10;
public static void main(String... args) throws Exception {

int cntTries = 0;
Connection con = null;

try {

Class.forName("com.mysql.cj.jdbc.Driver");

con = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/sample"”, "root", "pass");

} catch (Exception e) {

++cntTries;

System.out.println("Connection refused. Retrying in 5 seconds ..

Thread.sleep(5000);
}

} while (con == null &% cntTries < MAX TRIES);
if (con != null) {

// con != null, do something

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("select * from test");
while (rs.next()) {
System.out.println(rs.getInt(1) +
}

con.close();

+ 1s.getString(2));

")

CHAPTER 7 CONTROLLING THE FLOW

} else {

System.out.println("Could not connect!");
}
}

Sure, skipping the evaluation of the condition is not a big optimization, but in a big
application, every little optimization counts.

Breaking Loops and Skipping Steps

In the previous examples, I mentioned that exiting a loop using the break statement.
There are three ways to manipulate the behavior of a loop:

o The break statement exits the loop, and if accompanied by a label,
it breaks the loop that is labeled with it; this is useful when we have
more nested loops, because we can break form any of the nested
loops, not just the one containing the statement.

o The continue statement skips the execution of any code after it and
continues with the next step.

o The return statement is used to exit a method, so if the loop, or if or
switch statement is within the body of a method, it is used to exit the
loop as well. In regards to best practices, usage of return statements
to exit a method should not be abused as they might make the
execution flow difficult to follow.

break Statement

The break statement can only be used within switch, for, while, and do-while
statements. You have already seen how it can be used within the switch statement; let’s
look at how to use it in all the others.

Breaking out of a for, while or do-while loop can be done using the break
statement, but it must be controlled by an exit condition; otherwise, no step is executed.
In the following code sample, we print only the first three elements, even if the for loop
should traverse all of them. If we get to the index equal to 3, we exit the loop.

271

CHAPTER 7 CONTROLLING THE FLOW
package com.apress.bgn.ch7;

public class ManipulationDemo {
public static final int arr[] = {5, 1, 4, 2, 3};

public static void main(String... args) {

for (int i = 0; i < arr.length ; ++i) {

if (1==3){

System.out.println("Bye bye!");

break;

}

System.out.println("arr[" + i + "] = " + arr[i]);
}
}

If we have a case of nested loops, a label can be used to decide the looping statement
to break out of. As an example, in the following code we have three nested for loops, and
we exit the middle loop when all indexes are equal.

package com.apress.bgn.ch7;

public class ManipulationDemo {
public static final int arr[] = {5, 1, 4, 2, 3};

public static void main(String... args) {

for (int i = 0; i < 2; ++1) {
HERE: for (int j = 0; j < 2; ++j) {
for (int k = 0; k < 2; ++k) {
System.out.println("(i, j, k) =
if (1 ==7] & j == k) {
break HERE;
}

+ i + s + j + II,II + k + ll)ll);

272

CHAPTER 7 CONTROLLING THE FLOW

The label used in the code sample is named HERE, and it precedes the for statement
that is exited when the condition is fulfilled and follows the break statement. Writing
label names in all all-caps letters is considered a best practice in development as it
avoids confusing labels with variables or class named when reading the code.

To make sure this works, you can take a look in the console to see that all
combinations of (i, j,k), including the ones withi = j = kand all after it, are no
longer printed. In this case, all sets beginning with 0 are skipped, which is what is in the

console.

(i, j, k) = (1,0,0)
(i, j, k) = (1,0,1)
(i: j) k) = (111)0)

continue Statement

The continue statement does not break a loop, but can be used to skip certain steps
based on a condition. So it basically, stops the current step of the loop and moves to

the next one, so you could say that this statement continues the loop. Let’s continue
experimenting with the array traversal example, and this time, let’s skip from printing the
elements with odd indexes by using the continue statement.

package com.apress.bgn.ch7;

public class ManipulationDemo {
public static final int arr[] = {5, 1, 4, 2, 3};

public static void main(String... args) {

for (int i = 0; i < arr.length; ++i) {
if (i1%2 !=0){

continue;

}

System.out.println("arr[" + 1 + "] = " + arr[i]);
}
}

273

CHAPTER 7 CONTROLLING THE FLOW

This statement must be conditioned; otherwise, the loop will iterate uselessly. The
continue statement can be used with labels too. Let’s take a similar example to the three
nested for loops used earlier, but this time, when the k index is equal to 1, nothing is
printed and we skip to the next step of the loop enclosing the k loop.

package com.apress.bgn.ch7;

public class ManipulationDemo {
public static final int arr[] = {5, 1, 4, 2, 3};

public static void main(String... args) {

for (int i = 0; 1 < 3; ++1) {

HERE:
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 3; ++k) {
if (k == 1) {
continue HERE;
}
System.out.println("(i, j, k) = ("+i+"," +j+"," +k+")");
}
}
}
}

To make sure this works, you can take a look in the console to see that what combinations
are printed. We clearly notice that no combination with k=1 or k=2 has printed.

(i: j) k) = (OJO)O)
(i, j, k) = (0,1,0)
(i, j, k) = (0,2,0)
(i, j, k) = (1,0,0)
(i, j, k) = (1,1,0)
(i, j, k) = (1,2,0)
(i, j, k) = (2,0,0)
(i, j, k) = (2,1,0)
(i, j, k) = (2,2,0)

274

CHAPTER 7 CONTROLLING THE FLOW

I The usage of labels to break out of loops is frowned upon in the Java
community, because jumping to a label resembles the goto statement that
still can be found in certain old school programming languages. goto is a Java
reserved keyword, because this statement used to exist in the first version of
the JVM, but it was later removed. Using jumping makes code less readable,
less testable and promotes bad design. That is why goto was removed in

later versions, but any need of such operation can be implemented break and
continue statements.

return Statement

The return statement is an easy one. It can be used to exit the execution of a method
body. If the method returns a value, the return statement is accompanied by the value
returned. The return statement can be used to exit any of the statements mentioned in
this section. It can represent a smart way to shortcut the execution of a method, as the
execution of the current method stops and processing continues from the point in the
code that called the method.

Let’s look at a few examples. First let’s write a method that finds the first even
element in an array; if found, the method returns its index; otherwise, it returns -1.

package com.apress.bgn.ch7;

public class ReturnDemo {
public static final int arr[] = {5, 1, 4, 2, 3};

public static void main(String... args) {
int foundIdx = findEven(arr);
if (foundIdx != -1) {
System.out.println("First even is at: " + foundIdx);

275

CHAPTER 7 CONTROLLING THE FLOW

public static int findEven(int ... arr) {
for (int i = 0; i < arr.length; ++i) {
if (arr[i] %2 == 0) {

return i;

}
}

return -1;

}

Let’s write the same method but using a while statement.
package com.apress.bgn.ch7;

public class ReturnDemo {
public static final int arr[] = {5, 1, 4, 2, 3};

public static void main(String... args) {
int foundIdx = findEven(arr);
if (foundIdx != -1) {
System.out.println("First even is at: " + foundIdx);

}

}

public static int findEven(int ... arr) {
int i = 0;

while (i < arr.length) {
if (arr[i] % 2 == 0) {

return i;

}
++1;
}

return -1;

}

The return statement can be used in any situation where we want to terminate the
execution of a method if a condition is met.

276

CHAPTER 7 CONTROLLING THE FLOW

Controlling the Flow Using try-catch Constructions

Exceptions and try-catch statements were already mentioned in this book, but not as
tools to control flow execution. Before we skip to explanations and examples, let’s first
discuss the general template of a try-catch-finally statement.

try {
[code block]

} catch ([exception block]} {
[handling code block]

} finally {
[cleanup code block]

}

I'll explain each of these components.
o [code block] is the code block to execute.

o [exception_block] is a declaration or more of an exception type that
can be thrown by the [code_block].

o [handling code block] - an exception being thrown marks an
unexpected situation, which must be handled, once the exception
is being caught, this piece of code is executed to treat it, whether by
trying to return the system to a normal state or by logging details
about the cause of the exception.

o [clean_up code] is ablock of code releases resources or sets objects
to null so that they are eligible for collection.

Now that you know how a try-catch-finally works, you can probably imagine
how to use it to control the execution flow. Basically, within the [code_block], you can
explicitly throw exceptions and decide how they are treated.

Considering the array that we have been using until now, we’ll design our piece of
code based on it again. First, let’s write a piece of code that throws an exception when an
even value is found.

277

CHAPTER 7 CONTROLLING THE FLOW

package com.apress.bgn.ch7.ex;

public class ExceptionFlowDemo {
public static final int arr[] = {5, 1, 4, 2, 3};

public static void main(String... args) {

try {
checkNotEven(arr);

System.out.println("Not found, all good!");
} catch (EvenException e) {
System.out.println(e.getMessage());
} finally {
System.out.println("Cleaning up arr");
for (int i = 0; i < arr.length; ++i) {
arr[i] = o;
}
}
}

public static int checkNotEven(int... arr) throws EvenException {
for (int i = 0; i < arr.length; ++i) {

if (arr[i] % 2 == 0) {

throw new EvenException("Did not expect an even number at " + i);

}
}
return -1;
}

The EvenException type is a custom exception type written for this specific example
and its implementation is not relevant here. If we execute this piece of code the following
is printed.

Did not expect an even number at 2
Cleaning up arr

By throwing an exception, we’ve directed the execution to the handling code,
so Not found, all good!was not printed, and because we have a finally block that was
executed as well.

278

CHAPTER 7 CONTROLLING THE FLOW

So, yeah, you can mix-and-match: use different types of exceptions, have multiple
catch blocks—whatever you need to solve your problem. At a previous company that
I worked for, I stumbled upon a piece of code that was validating a document and
throwing different types of exceptions depending on the validation check that was not
passed and in the finally block we had a code that was converting the error object to
PDF. The code looks similar to this:

ErrorContainter errorContainer = new ErrorContainter();
try {
validate(report);
} catch (FileNotFoundException | NotParsable e) {
errorContainer.addBadFileError(e);
} catch (InvestmentMaxException e) {
errorContainer.addInvestmentError(e);
} catch (CreditIncompatibilityException e) {
errorContainer.addIncompatibilityError(e);
} finally {
if (errorContainer.isEmpty()) {
printValidationPassedDocument();
} else {
printValidationFailedDocument(errorContainer);

The code in the finally code block was complex and totally not recommended
to be in there. But sometimes in the real world, the solutions do not always respect
best practices, or even common sense practices. And when dealing with legacy code,
you might find yourself in the position to write crappy but functional code that must
be delivered fast. Because, sure programming is awesome, but in the eyes of some
managers, results are more important. If you are lucky enough to get a job at a company
that is looking to build on the code in the future or hand it to other team members, you
might actually end up with a manager that favors best practices. Just remember to do
your best, and document everything properly and you'll be fine.

279

CHAPTER 7 CONTROLLING THE FLOW

Summary

This chapter covered one of the most important things in development: how to design

your solutions, the logic of it. You've also been introduced to what flowcharts are and

their components, as tools for deciding how to write your code and how to control

execution paths. And finally, you've learned which statements to use and when. A few

Java best practices were discussed, so that you are able to design the most suitable

solutions to your problems.

Java provides

280

simple and more complex ways to write if statements

a switch statement that works with any primitive type, enumerations
and starting with Java 7, String instances

a few ways to write for statements

how to use forEach methods and streams to traverse a collection of
values

while statement, used when a step must be repeated until a
condition is met

do-while statement, used when a step must be repeated until a
condition is met, but the step is repeated at least once, because the
continuation condition is evaluated after it

how to manipulate loop behavior by using statements like break,
continue, and return

how to control the execution flow by using try-catch-finally
constructions

CHAPTER 8

The Stream API

The term stream has more than one meaning, as explained on Dictionary.com.

e abody of water flowing in a channel or watercourse, as a river, rivulet,
or brook

e asteady current in water, as in a river or the ocean
» any flow of water or other liquid or fluid

e acurrent or flow of air, gas, or the like

o acontinuous flow or succession of anything

o prevailing direction; drift

o Indigital technology - a flow of data, as an audio broadcast, a movie,
or live video, transmitted smoothly and continuously from a source
to a computer, mobile device, and so forth.

In the software development context the definitions that are closest to a stream are
the fifth and part of the seventh (highlighted in bold). I software development a stream
is a sequence of objects from a source that supports aggregate operations. In your mind,
you would be saying right now: so, is it similar to a collection? Well... not quite.

Introduction to Streams

Consider a really big collection of songs that we want to analyze. We want to find all
songs with duration of at least 300 seconds. We want to save the names of these songs in
a list and sort them by decreasing order of their duration. Assuming we already have the
songs in a list, the code looks like this:

List<Integer> songlist = ...
List<Song> resultedSongs = new ArraylList<>();

281

© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_8

CHAPTER 8 THE STREAM API

for (Song song: songlList) {
if (song.getDuration() >= 300) {
resultedSongs.add(song);

}

Collections.sort(resultedSongs, new Comparator<Song>(){
public int compare(Song si, Song s2){
return s2.getDuration().compareTo(s1.getDuration());

D;
System.out.println(resultedSongs);

List<String> finallist = new ArraylList<>();
for (Song song: resultedSongs) {
finallList.add(song.getTitle());

}
System.out.println(finallList);

One of the problems with this code is that processing large collections is not really
efficient. Also, we are traversing lists over and over again and performing checks to get to
a final result. Wouldn'’t it be nice if we could just link all of those operations together and
execute them on the initial list?

Enter Java 8 and the new Stream abstraction that represents a sequence of elements
that can be processed sequentially or in parallel and supports aggregate operations.
Because of the latest evolutions in hardware development, CPUs have become more
powerful and more complex, containing multiple cores that can process information
in parallel. To make use of these hardware capabilities in Java the Fork Join Framework
was introduced. And in Java 8, the Stream API'was introduced to support parallel data
processing, without the boiler-code of defining and synchronizing threads. The central
interface of the Stream APIis the java.util.stream.BaseStream. Any object with
stream capabilities is of a type that extends it. A stream does not store elements itself,
itis not a data structure, it is used to compute elements and serve them on-demand to
a function or a set of aggregate functions. Serving the elements in a sequence involves
an internal automatic iteration. Functions that return a stream can be chained in a
pipeline, and are called intermediate operations. They are used to process elements of a
stream and return the result as a stream to the next function in the pipeline. Functions

282

CHAPTER 8 THE STREAM API

that return a result that is not a stream are called terminal operations and are obviously
present at the end of a pipeline. As a quick example before getting deeper, the previous
code can be written like this using streams:

List<String> finallist = songlist.stream().filter(s -> s.getDuration()>= 300)
.sorted(Comparator.comparing(Song: :getDuration).reversed())
.map(Song: :getTitle)

.collect(Collectors.tolList());

System.out.println(finallist);

Yup, programming with streams is awesome. The Stream API concept allows
developers to transform collections into streams, and write code to process the data in
parallel and then getting the results into a collection.

Because working with streams is a sensitive way of programming; I recommend
designing the code by taking every possibility in mind. NullPointerExceptionis one
of the most common exceptions to be thrown in Java. In Java 8, the class Optional<T>
was introduced to avoid this type of exceptions. Stream<T> instances are used to store
an infinite instances of type T, while Optional<T> is an instance that might or might
not contain an instance of type T. Because both of these implementations are basically
wrappers for other types, they are covered together.

! For practical reasons, Stream instances are referred in this chapter as streams,
in a similar manner as List instances are referred as /ists and collection
instances as collections, and many more.

I You might notice that the term function was introduced and refers to the
methods called on streams or their arguments. This is because working with
streams allows for Java code to be written in functional programming style.
Java is an object-oriented programming language, and the object is its core
term. In functional programming, the core term is pure function. Code is written
by composing pure functions, which avoids shared states, takes advantage of
immutable data, and avoids the side effects of processing contamination.’

'The following is a very good article about the functional programming paradigm
and I gladly recommend you to read it: https://medium.com/ javascript-scene/
master-the-javascript-interview-what-is-functional-programming-7f218c68b3a0

283

https://medium.com/javascript-scene/master-the-javascript-interview-what-is-functional-programming-7f218c68b3a0
https://medium.com/javascript-scene/master-the-javascript-interview-what-is-functional-programming-7f218c68b3a0
https://medium.com/javascript-scene/master-the-javascript-interview-what-is-functional-programming-7f218c68b3a0

CHAPTER 8 THE STREAM API

Creating Streams

Before having fun and optimizing our code using streams let’s see how we can create
them. To create a stream, we need a source. That source can be anything: a collection
(list, set or map), an array, I/O resources used as input (such as files, databases, or
anything that can be transformed into a sequence of instances).

A stream does not modify its source, so multiple stream instances can be created
from the same source and used for different operations.

Creating Streams from Collections

In the introduction of the chapter, in the last snippet of code we were introduced to one
method of creating a stream from a list. Starting with Java 8, all collection interfaces and
classes were enriched with default methods that return streams. In the following code
sample, we take a list of integers and transform it into a stream by calling its stream()
method. After having a stream, we traverse it using the forEach method to print the
values in the stream and the name of the execution thread this code is executed on. Why,
the thread name you ask? You see shortly.

package com.apress.bgn.ch8;
import java.util.list;

public class StreamsDemo {
public static void main(String... args) {
List<Integer> biglist = List.of(50, 10, 250, 100 ...);

biglist.stream()

.forkach(i -»
System.out.println(Thread.currentThread().getName() +

+ 1)

)5

284

CHAPTER 8 THE STREAM API

The previous code creates a stream of integer elements. The Stream interface exposes
a set of methods that each Stream implementation provides a concrete implementation
for. The most used is the forEach method that iterates over the elements in the stream.
The forEach method requires a parameter of type java.util.function.Consumer<T>.

I A consumeris what we call in this book an inline implementation of the java.
util.function.Consumer<T> functional interface. This means it has only has
one method that a class implementing it has to provide a concrete implementation
for. The method named accept (T t), takes a stream element of type T as
argument, processes it and returns nothing.

This method is called for each element in the stream, and the T is the type of the
elements in the stream. The implementing class is basically declared inline by only
mentioning the body of the method. The JVM does the rest, because of the magic of
lambda expressions. Without them, you would have to write something like this:

import java.util.function.Consumer;

bigList.stream()
.forEach(new Consumer<Integer>() {
@0verride
public void accept(Integer i) {
System.out.println(Thread.currentThread().getName() +

}

+1);

D

Actually, this was the way you would write code before lambda expressions were
introduced in Java 8. If you needed to create a single object of a class type implementing
a specific interface, in a singular place in the application, you could choose to write a
contraption like that, which looks like you are instantiating the interface; the result of that
code is called an anonymous class. Lambda expressions simplified this process a lot, but
only for a category of interfaces named functional interfaces, which define a single method
and are annotated with the @FunctionalInterface annotation (starting in Java 8).

285

CHAPTER 8 THE STREAM API

In the previous example, the implementation prints the thread name and the value
of the element. The following is the result is of running that code.

main: 50
main: 10
main: 250
main: 100

The fact that each number is prefixed with main means that all integers in the stream
are processed sequentially by the same thread, and is the main thread of the application.

I For practical reasons, there is no need to call stream()for collections when
a sequential stream is needed only for traversal, because the forEach method
defined for them does the job well. So the preceding code can be reduced to

biglList.forEach(i ->
System.out.println(Thread.currentThread().getName() +

+ 1)

)5

The name of the thread was printed because there is another way to create a stream
by calling the parallelStream() method. The only difference is that the returned
stream is a parallel stream. This means that each element of the stream is processed on
a different thread. Of course, this means the implementation of the Consumer must be
thread-safe and not contain code that involves instances that are not meant to be shared
amongst threads. The code to print the value of a stream element, does not affect the
value of the element returned by the stream, not other external object, so it is safe to
parallelize. So let’s use parallelStream() instead of stream to create a stream and print
the elements of the stream using the same Consumer implementation.

package com.apress.bgn.ch8;

import java.util.Llist;
import java.util.function.Consumer;

public class StreamsDemo {
public static void main(String... args) {
List<Integer> biglist = List.of(50, 10, 250, 100 ...);

286

CHAPTER 8 THE STREAM API

biglist.parallelStream()
.forkach(i -»
System.out.println(Thread.currentThread().getName() +

+1)

)5

If we execute the code in the console, we see something similar to the output, but
slightly different.

ForkJoinPool.commonPool-worker-9: 94
ForkJoinPool.commonPool-worker-7: 10
ForkJoinPool.commonPool-worker-5: 40052
ForkJoinPool.commonPool-worker-3: 50
ForkJoinPool.commonPool-worker-13: 74
ForkJoinPool.commonPool-worker-9: 200
ForkJoinPool.commonPool-worker-11: 250
ForkJoinPool.commonPool-worker-7: 83
ForkJoinPool.commonPool-worker-3: 23

The first thing you notice is the thread name, we no longer have one, but a lot of
them all named ForkJoinPool.commonPool-worker-**. This tells us that all stream
elements are processed on different threads, but all of them are part of the same pool.

A thread pool is created by the JVM in this case to contain a few thread instances, used
to process all elements in the stream in parallel. The advantage of using a thread pool is
that the threads can be reused, so no new thread instances need to be created and this
optimizes the execution time a little, but it is visible only in more complex solutions.
If you look at the number associated to each thread, the number at the end of the
thread name, you can see that the numbers sometimes repeat. This basically means the
same thread was reused to process another stream element.

Creating Streams from Arrays

The streams we have used so far, were created from a List instance. The same syntax can
be used for Set instances as well.

287

CHAPTER 8 THE STREAM API
But streams can be created from arrays as well. Look at the following piece of code.
package com.apress.bgn.ch8;

import java.util.Arrays;
public class ArrayStreamDemo {

public static void main(String... args) {
int[] arr = { 50, 10, 250, 100 ...};

Arrays.stream(arr).forEach(
i -> System.out.println(Thread.currentThread().getName() +

+ 1)

)5

The static method stream(int[] array) from the utility class Arrays creates a
stream of primitives. For arrays that contain objects, the method called is stream(T[]
array) (where T is a generic type) that is replaced with the type of the elements in
the array. Streams generated from arrays can be parallelized by calling the parallel
methods, which exist for parallel streams as well. So, the following code can be
parallelized, as shown.

package com.apress.bgn.ch8;

import java.util.Arrays;
public class ArrayStreamDemo {

public static void main(String... args) {
int[] arr = { 50, 10, 250, 100 ...};

Arrays.stream(arr).parallel().forEach(

i -> System.out.println(Thread.currentThread().getName() + ":
);

For both cases, the output is the same as in the previous examples, so there is no
need to depict it again.

288

CHAPTER 8 THE STREAM API

The novelty with arrays is that a stream can be created form a part of the array by
specifying the start and the end indexes for the array chunk.

Arrays.stream(arr, 3,6).forEach(
i -> System.out.println(Thread.currentThread().getName() +

+ 1)

)5

Creating Empty Streams

When writing Java code, a good practice is to write methods that return objects by
avoiding returning null to reduce the possibility of Nul1PointerExceptions being
thrown. When methods return streams, the preferred way is to return an empty stream.
This can be done by calling the static Stream.empty() method of the Stream interface.
The following method, receives a list of Song instances as a parameter and returns a
stream using it as a source. If the list is null or empty, an empty stream is returned.

public static Stream<Song> asStream(List<Song> inputlist) {
if (inputList == null || inputList.isEmpty()) {
return Stream.empty();
} else {
return inputlist.stream();

Creating Finite Streams

Aside from creating streams from actual sources, streams can be created on the spot by
calling stream utility methods like Stream.generate() or Stream.builder().

The builder () method should be used when we want to build a limited stream with
a fixed sets of known values. This method returns an instance of java.util.stream.
Stream.Builder<T>, an internal interface that declare a default method named add(..)
that needs to be called to add the elements of the stream. To create the Stream instance,
its build method must be finally called. The add(. .) method returns a reference to the
Builder instance so it can be chained with any other methods of this class. The following
code is a sample of how the builder () method can be used to create a finite stream of
Integer values.

289

CHAPTER 8 THE STREAM API

Stream<Integer> built = Stream.<Integer>builder()
.add(50).add(10).add(250).build();

As the Builder interface is a generic one, it is mandatory to specify a type argument,
as the type of the elements in the stream. Also, the builder() method is generic and
requires the type to be provided as a parameter in front of it, right before being called. If
no type is specified the default Object is used.

To create a stream, the generate(..) method can also be used. This method receives
as a parameter an instance of type java.util.function.Supplier<T> instance.

' A supplieris what we call in this book an inline implementation of the java.
util.function.Supplier<T> functional interface. This interface requires a
concrete implementation to be provided for its single method named get (). This
method should return the element to be added to the stream.

So, if we want to generate a stream of integers, a proper implementation for get ()
should return a random integer. The expanded code is depicted next; no lambda
expressions are used to make it clear that the get(. .) receives as a parameter a
Supplier<Integer> instance created on the spot.

Stream<Integer> generated = Stream.generate(
new Supplier<Integer>() {
@verride
public Integer get() {
Random rand = new Random();
return rand.nextInt(300) + 1;

}
).limit(15);

The 1imit method limits the number of elements generated by the supplier to 15;
otherwise, the generated stream is infinite. If we make use of lambda expressions, the
previous code reduces to

Stream<Integer> generated = Stream.generate(
() -> new Random().nextInt(300) + 1
).limit(15);

290

CHAPTER 8 THE STREAM API

But this is not all; if Supplier<Integer>.get() always returns the same number, no
matter how useless it is, it can be done and the previous code becomes

Stream<Integer> generated = Stream.generate(() -> 5).limit(15);

If more control is needed over the elements in the stream, the iterate(..) method
can be used. It was introduced in Java 9 and using this method is like having a for
statement generate the entries for the stream. The method receives as arguments an
initial value called a seed, a predicate that determines when the iteration should stop,

and an iteration step.

! A predicate is an inline implementation of the functional interface java.util.
function.Predicate<T> that declares a single method that returns a boolean
value. The implementation of this method should test its single argument of type T
against a condition and return true if the condition is fulfilled and false if not.

In the following example, stream elements are generated, starting from 0, using a
step of 5 and they are generated as long as the values are lesser than 50, as defined by the

predicate.
Stream<Integer> iterated = Stream.iterate(o, i -> i <50, i -> i + 5);

As with the for statement, the termination condition is not mandatory and there is
an iterate(...) method version that does not require a predicate, but in this case the
limit(...) method must be used to make sure the stream is finite.

Stream<Integer> iterated = Stream.iterate(0, i-> 1+ 5).1limit(15);

The first element of the stream is the seed value.

In Java 9 aside from 1imit() there is another way to control the numbers of values in
a stream: the takeWhile(..) operation. This method takes the longest set of elements
from the original stream that matches the predicate received as argument, starting with
the first element. This works fine for ordered streams, but if the stream is unordered the
result is, any set of elements that match the predicate, including an empty one. Let’s
see it in action! The first code sample uses takeWhile(..) on a stream of integers and
returns a stream with elements that divide by 3.

291

CHAPTER 8 THE STREAM API

Stream<Integer> forTaking = Stream.of(3, 6, 9, 11, 12, 13, 15);
forTaking.takeWhile(s -> s % 3 == 0)
.forEach(s -> System.out.print(s + " "));

The code prints 3 6 9 because this is the first set of elements that match the
given predicate. If takeWhile(..) is called on an unordered stream, the result is
unpredictable. The result might be 36 9 or 12 36 18 42, as the result is a subset of any
elements matching the predicate. So the result of takeWhile(..) on an unordered

stream is non-deterministic.

Stream<Integer> forTaking = Stream.of(3, 6, 9, 2, 4, 8, 12, 36, 18, 42, 11, 13);
forTaking.parallel().takeWhile(s -> s % 3 == 0)
.forEach(s -> System.out.print(s + " "));

The takeWhile(..) operation is the "sister" of the dropWhile(..); and does exactly
the reverse of what takeWhile(..) does: it returns, for an ordered stream, a stream
consisting elements after dropping the longest set of elements that match the predicate.
So in the following example, we expect the following elements to be printed in the
console: 11121315

Stream<Integer> forDropping = Stream.of(3, 6, 9, 11, 12, 13, 15);
forDropping.dropWhile(s -> s % 3 == 0)
.forEach(s -> System.out.print(s + " "));

The result of this operation for unordered streams is also non-deterministic, as the
operation can drop any set, including the empty one.

If these two operations are executed on parallel streams, the only thing that changes
is the order in which the elements are printed, but the result sets contain the same
elements.

Streams of Primitives and Streams of Strings

When we first created a stream of primitives, we used an int[] array as a source. But
streams of primitives can be created in a different way, because the Stream API contains
more interfaces with default methods to make programming with streams practical.
Figure 8-1 shows the Stream hierarchy. The IntStreaminterface can be used to create
primitive streams of integers. This interface exposes many methods to do so, some of
them inherited from BaseStream. An IntStreaminstance can be created from a few

292

CHAPTER 8 THE STREAM API

values specified on the spot, either by using the builder(), generate(), or iterate()
methods or by using the of method, as depicted next.

IntStream intStreamo = IntStream.builder().add(0).add(1).add(2).add(5).build();
IntStream intStreami = IntStream.of(0,1,2,3,4,5);

An IntStreaminstance can be created by giving the start and end of an interval as
arguments to the range() and rangeClosed(). Both of them generate elements for the
stream, with a step of 1, only the last one includes the upper range of the interval as a value.

I = AutoCloseable

|

I ' BaseStream
| EEE
| I

I = DoubleStream ‘ I = LongStream ‘ X tream ‘ I & IntStream |

Figure 8-1. Stream API interfaces

intStream2

IntStream.range(0, 10);

intStream3 = IntStream.rangeClosed(0, 10);

Also, in Java 1.8 the java.util.Random class was enriched with a method named
ints that generates a stream of random integers. It declares a single argument that
represents the number of elements to be generated and put in the stream, but there is a
form of this method without the argument that generates an infinite stream.

Random random = new Random();
intStream = random.ints(5);

All the methods mentioned for IntStream can generate LongStream instances,
because equivalent methods are defined in this interface. There are no range methods
for DoubleStream, but there is the of () method, builder(), generate() and so on.
Also, the java.util.Random class was enriched in Java 1.8 with the doubles () method
that generates a stream of random double values. It declares a single argument that

293

CHAPTER 8 THE STREAM API

represents the number of elements to be generated and put in the stream, but there is
a form of this method without the argument that generates an infinite stream. In the
following code snippet, a few ways of creating streams of doubles are depicted.

DoubleStream doubleStream0 = DoubleStream.of(1, 2 , 2.3, 3.4, 4.5, 6);

Random random = new Random();
DoubleStream doubleStream1 = random.doubles(3);

DoubleStream doubleStream2 = DoubleStream.iterate(2.5, d -> d = d + 0.2).
limit(10);

For streams of char values there is no special interface, but IntStream can be used
just fine.

IntStream intStream = IntStream.of('a','b','c','d");

intStream.forEach(c -> System.out.println((char) c));

Another way to create a stream of char values is to use a String instance as a stream

source.

IntStream charStream = "sample".chars();
charStream.forEach(c -> System.out.println((char) c));

In Java 8, the java.util.regex.Pattern was enriched with stream specific methods
too; as a class used to process String instances, it is the proper place to add these
methods after all. A Pattern instance can be used to split an existing String instance
and return the pieces as a stream using the splitAsStream(..) method.

Stream<String> stringStream = Pattern.compile(" ")
.splitAsStream("live your life");

The contents of a file can also be returned as a stream of strings using the Files.
lines(..) utility method.

String inputPath = "chapter08/src/main/resources/songs.csv";
Stream<String> stringStream = Files.lines(Path.of(inputPath));

The sections so far have shown you how to create all types of streams; the next
sections show you how to use them to process data.

294

CHAPTER 8 THE STREAM API

I If you feel the need to associate stream instances with real objects to make
sense of them, | recommend the following: imagine a finite stream(like one created
from a collection) as the water dripping from a mug when inclined. The water in
the mug will end eventually, but while the water drips, it forms a stream. An infinite
stream is like a river that has a fountain head, it flows continuously. (well, unless a
serious drought dries the river, of course)

A Short Introduction to Optional

The java.util.Optional<T> instances are the Schrodinger? boxes of the Java Language.
They are very useful because they can be used as a return type for methods to avoid
returning a null value, and cause either a possible Nul1PointerException to be thrown,
or the developer using the method to write extra code to treat the possibility of an
exception being thrown. Optional<T> instances can be created in similar way to streams.

There is an empty () method for creating an optional value of any type that does not
contain anything.

Optional<Song> empty = Optional.empty();
There is an of () method used to wrap an existing object into an Optional<T>.
Optional<Long> value = Optional.of(5L);

Considering that these type of instances were designed to not allow null values and
the way the Optional<T> instance was created previously, what would stop us to write
something like the following?

Song song = null;
Optional<Song> nullable = Optional.of(song);

The compiler wouldn'’t, but when the code is executed at runtime, a NullPointer
Exception is thrown. Still, if we really need an Optional<T> instance to permit null
values, it is possible, there’s an utility method was introduced in Java 9 just for that.
Song song = null;

Optional<Song> nullable = Optional.ofNullable(song);

’Read about it at https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s cat
295

https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat

CHAPTER 8 THE STREAM API

Now that we have Optional<T> instances, what can we do with them? We use them.
Let’s take a look at the following code.

package com.apress.bgn.ch8;

import com.apress.bgn.ch8.util.Medialoader;
import com.apress.bgn.ch8.util.Song;

import java.util.list;

public class OptionalDemo {
public static void main(String... args) {

List<Song> songs = Medialoader.loadSongs();

song = findFirst(songs, "B.B. King");

if(song != null && song.getSinger().equals("The Thrill Is Gone")) {
System.out.println("Good stuff!");

} else {
System.out.println("not found!");

}

public static Song findFirst(List<Song> songs, String singer) {
for (Song song: songs) {
if (singer.equals(song.getSinger())) {
return song;

}

return null;

The findFirst(..) method looks for the first song in the list that has the singer equal
to “B.B. King’, returns it and prints a message if found, and another if not. You can notice
the nullability test and iteration of the list. In Java 8, both of them are no longer necessary.

Optional<Song> opt = songs.stream()
.filter(s -> "B.B. King".equals(s.getSinger()))
.findFirst();
opt.ifPresent(r -> System.out.println(r.getTitle()));

296

CHAPTER 8 THE STREAM API

If the Optional<T> instance is not empty, the song title is printed, otherwise,
nothing is printed, and the code continues from that point on without an exception
being thrown. But what if we want to print something when the Optional<T> instance is
empty? In Java 11, we can do something about that, because a method named isEmpty()
was introduced to test the Optional<T> instance contents.

Optional<Song> opt = songs.stream()
.filter(s -> "B.B. King".equals(s.getSinger()))
findFirst();
if(opt.isEmpty()) {
System.out.println("Not found!");

But wait, this is a little bit... not right. Can’t we have a method to call on an
Optional<T> to get the exact behavior as an if-else statement? Well, that was possible
starting with Java 9; the ifPresentOrElse(..) that takes as arguments a consumer
to process the contents of the Optional<T> instance when is not empty and a Runner
instance to execute when the Optional<T> instance is empty.

Optional<Song> opt = songs.stream()
.filter(ss -> "B.B. King".equals(ss.getSinger())).findFirst();
opt.ifPresentOrElse(
r -> System.out.println(r.getTitle()),
() -> System.out.println("Not found!")) ;

If the Optional<T> instance is not empty, its contents can be extracted by calling the
get() method.

Optional<Song> opt2 = songs.stream()
.filter(ss -> "Rob Thomas".equals(ss.getSinger()))
.findFirst();
System.out.println("Found Song '

+ opt2.get());

The code does not print anything when the desired object is not found. But if we

want to print a default value for example, we can do that as well using a method named
orElse().

297

CHAPTER 8 THE STREAM API

Optional<Song> opt = songs.stream()
.filter(ss -> "B.B. King".equals(ss.getSinger()))
findFirst();

opt.ifPresent(r -> System.out.println(r.getTitle()));

Song defaultSong = new Song();
defaultSong.setTitle("Untitled");

Song s = opt.orElse (defaultSong);
System.out.println("Found: " + s.getTitle());

If we were interested to throw a specific exception when the Optional<T> is empty,
there is a method for that as well, named orElseThrow(..)

Optional<Song> opt = songs.stream()
.filter(s -> "B.B. King".equals(s.getSinger()))
findFirst();

Song song = opt.orElseThrow(IllegalArgumentException::new);

As you probably noticed in the code samples, Optional<T> and Stream<T> can be
combined to write practical code to solve complex solutions. As there are a lot of methods
that can be applied to Optional<T> and Stream<T> instances as well, the next sections
introduce them for streams and randomly make reference to Optional<T> as well.

How to Use Streams

After creating a stream, the next thing is to process the data on the stream. The result

of that processing is another stream that can be further processed as many times as
needed. There are a few methods to use to process a stream and return the result as
another stream. These methods are called intermediate operations. The methods that
do not return a stream but actual data structures, or nothing, are named terminal
operations. All these are defined in the Stream interface. The key feature of streams is
that the processing of data using streams is only done when the terminal operation is
initiated and elements from source are consumed only as needed. So you could say that
the whole stream process is well, lazy. Lazy loading of source elements and processing
them when needed allows significant optimizations.

298

CHAPTER 8 THE STREAM API

After the previous affirmations, you probably realized that the forEach method that
was used to print values from the streams is a terminal operation. But there are a few that
you'll likely need for the most common implementations.

This chapter started with an example of Song instances, but the Song class was not
listed yet. You can see its contents in the following code listing.

package com.apress.bgn.ch8.util;

public class Song {
private Long id;
private String singer;
private String title;
private Integer duration;
private AudioType audioType;

... //getters and setters
. // toString

The AudioType is an enum containing the types of audio files and is depicted in the
following code snippet.

package com.apress.bgn.ch8.util;

public enum AudioType {
MP3,
FLAC,
0GG,
AAC,
MaA,
WMA

And now that the data type that is used on the following stream examples is depicted,
the data should be depicted as well. In the example in the book, the data is contained
into a file named songs.csv. The CSV extension denotes a comma separated file, and
each Song instance matches a line in the file. Each line contains all the property values
of each Song instance, separated by columns. Other separators can be used, semi-colons
were used here for practical reasons(that is the default supported by the library reading
the data). The contents of the file are depicted next.

299

CHAPTER 8 THE STREAM API

ID; SINGER;TITLE;DURATION;AUDIOTYPE

01;John Mayer;New Light;206;FLAC

02;John Mayer;My Stupid Mouth;225;M4A
03;John Mayer;Vultures;247;FLAC

04;John Mayer;Edge of Desire;333;MP3
05;John Mayer;In Repair;372;MP3

05;Rob Thomas;Paper Dolls;185;MP3

07;The Script;Mad Love;207;MP3

08;Seth MacFarlane;No One Ever Tells You;244;MP3
09;Nat King Cole;Orange Colored Sky;154;MP3
10;Vertical Horizon;Forever;246;MP3
11;Mario Lanza;Temptation;141;M4A

12;Jack Radics;No Matter;235;MP3

13;George Michael;Fastlove;306;MP3
14;Childish Gambino;Freaks And Geeks;227;M4A
15;Bill Evans;Lover Man;304;MP3

16;Darren Hayes;Like It Or Not;381;MP3
17;Stevie Wonder;Superstition;284;MP3
18;Tony Bennett;It Had To Be You;196;MP3
19;Tarja Turunen;An Empty Dream;322;MP3
20;Lykke Li;Little bit;231;M4A

Each line in the file is transformed into a Song instance by using classes in a library
named Josefa.? This library is not the topic of this book, but if you are interested, you
can use the link in the footnote to get more information from the official site.

Terminal Functions: forEach and forEachOrdered

And now we are ready to start playing with streams. Assuming the songs stream provides
all instances declared, let’s first print all the elements on the stream.

package com.apress.bgn.ch8;

import com.apress.bgn.ch8.util.Song;
import com.apress.bgn.ch8.util.StreamMedialoader;

%JSefa (Java Simple exchange format API) is a simple library for stream-based serialization of Java
objects to XML, CSV, and FLR. More about it at http://jsefa.sourceforge.net/

300

http://jsefa.sourceforge.net/

CHAPTER 8 THE STREAM API

import java.util.Llist;
import java.util.stream.Stream;

public class MediaStreamTester {
public static void main(String... args) {
Stream<Song> songs = StreamMedialoader.loadSongs();
songs.forEach(song -> System.out.println(song));

Because we are using Java 11 by now, we can make use of method references
introduced in Java 8. Method references are a shortcut for cases when a lambda
expression does nothing else than call a method, so the method can be referred by name
directly. So this line

songs.forEach(song -> System.out.println(song));
becomes
songs.forEach(System.out::println);

The forEach(..) method receives an instance of Consumer<T> as an argument. In
the two previous examples, the implementation of the accept () method contained only
a call to System.out.println(song) and that is why the code is so compact, but if the
implementation of this method would contain more statements then the compact code
previously written would not be possible.

Instead of printing the songs directly, let’s first uppercase the singer name. The code
would look like this:

songs.forEach(new Consumer<Song>() {
@verride
public void accept(Song song) {
song.setSinger(song.getSinger().toUpperCase());
System.out.println(song);

};

301

CHAPTER 8 THE STREAM API
Of course, it can be simplified using lambda expressions.

songs.forEach(song -> {
song.setSinger(song.getSinger().toUpperCase());
System.out.println(song);

};

The sister function, forEachOrdered(. .), does the same thing as forEach(. .), with
one little difference, ensure that the elements on the stream is processed element is
processed in encounter order, if such order is defined, even if the stream is a parallel one.
So basically the following two lines, print the songs in the same order.

songs.forEach(System.out: :println);
songs.parallel().forEachOrdered(System.out: :println);

Intermediate Operation filter and Terminal Operation
toArray

In the following example, we select all MP3 songs and save them to an array. Selecting
all MP3 songs is done using the filter(..) method. This method receives an argument
of type Predicate<? super T> that defines a condition that the elements of the stream
must pass to be put into the array that results by calling the terminal method named
toArray(..).

The toArray(..) receives an argument of type IntFunction<A[]>. This type of
function takes an integer as argument and generates an array of that size, which is
populated by the toArray() method.

The code to filter the MP3 entries and put them into an array of type Song[] is
depicted next.

Song sarray = songs.filter(s -> s.getAudioType() == AudioType.MP3)
.toArray(Song: :new);

302

CHAPTER 8 THE STREAM API

Intermediate Operations map and flatMap and Terminal
Operation collect

In the following example we process all the songs and calculate the duration in
minutes. To do this, we use the map method to associate each song with the method
processing it. This result is a stream of Integer values. All of its elements are added to a
List<Integer> usingthe collect(..) method. This method accumulates the elements
as they are processed into a Collection instance.

package com.apress.bgn.ch8.util;
public class SongTransformer {
public static int processDuration(Song song) {
int secs = song.getDuration();
return secs/60;

List<Integer> durationAsMinutes = songs
.map(SongTransformer: :processDuration)
.collect(Collectors.tolList());

The map(. .) method receives an argument of type Function<T,R> which is basically
areference to a function to apply on each element of the stream. The function we
applied in the previous example takes a song element from the stream, gets its duration
and transforms it into minutes and returns it.

The reference to it can be written as

Function<Song,Integer> fct = SongTransformer::processDuration;

The first generic type is the type of the element processed and the second is the type
of the result returned.

A version of the filter method is defined for the Optional type and can be used to
avoid writing complicated if statements, together with the map method. Let’s assume we
have a Song instance and we want to check if it is more than three minutes and less than
10 minutes long. Instead of writing an if statement with two conditions connected by an
AND operator, we can use an Optional<Song> and those two methods to do the same.

303

CHAPTER 8 THE STREAM API

public static boolean isMoreThan3Mins(Song song) {
return Optional.ofNullable(song)
.map(SongTransformer: :processDuration)
filter(d -> d >= 3)
filter(d -> d <= 10)
.isPresent();

So, the map(. .) is quite powerful, but it has a small flaw. If we take a look at its
signature in the Stream. java file, this is what we see:

<R> Stream<R> map(Function<? super T, ? extends R> mapper);

So, if the map function is applied to each element in the stream and returns a
stream with the result, which is placed into another stream that contains all results,
the collect(...) method is called on a Stream<Stream<Integer>>. The same goes
for Optional<T>, the terminal method is called on a <Optional<Optional<T>>>.
When the objects are simple, like we have here Song instances, the map(. .) method
works quite well, but if the objects in the original stream are more complex, let’s say a
List<List<Integer>>, things get complicated. In a case like this the map method should
be replaced with flatMap. The easiest way to show the effects of the flatMap(..) is to
apply it exactlyon a List<List<Integer>>. Let’s take a look at the following example.

List<List<Integer>> testlist = List.of (List.of(2,3), List.of(4,5),
List.of(6,7));
System.out.println(processList(testList));

public static List<Integer> processList(List<List<Integer>> list) {
List<Integer> result = list
.stream()
.flatMap(Collection::stream)
.collect(Collectors.tolList());
return result;

The flatMap(..) method receives as argument a reference to a method that
takes a collection and transforms it into a stream, the most simple way to create
a Stream<Stream<Integer>>. The flatMap(..) does its magic and the result is

304

CHAPTER 8 THE STREAM API

transformed into <Stream<Integer>> and the elements are then collected by the
collect method into a List<String>. The operation of removing the useless stream
wrapper is called flattening.

Another way to see the effect of the flatMap(. .) method is to write a simpler
example with Optional. Let’s say we need a function that transforms a string into an
integer and if the string is not a valid number we want to avoid returning null. This
means that our function must take a string and return Optional<Integer>.

Function<String, Optional<Integer>> toIntOpt = OptionalDemo::toIntOpt;

public static Optional<Integer> toIntOpt(String string) {
try {
return Optional.of(Integer.parselnt(string));
} catch (NumberFormatException e) {
return Optional.empty();

Now that we have our function, let’s use it.

Optional<String> str = Optional.of("42");
Optional<Optional<Integer>> resInt = str.map(toIntOpt);

// flatten it
Optional<Integer> desiredRes = resInt.orElse(Optional.empty());
System.out.println("finally: " + desiredRes.get());

If we want to get to the Optional instance that we are really interested in, we have to
getrid of the external Optional wrapper. If we use flatMap(. .), we do not need to do that.

Optional<String> str = Optional.of("42");
Optional<Integer> desiredRes = str.flatMap(toIntOpt);

System.out.println("boom: " + desiredRes.get());

So yeah, there is a slight difference between these two methods, which you probably
would have never investigated; as in most cases when working with streams the map ()
method is usually terminated with collect(..).

305

CHAPTER 8 THE STREAM API

Intermediate Operation sorted and Terminal Operation
findFirst

As the name says the sorted() method has something to do with sorting. When called
on a stream, it creates another stream with all the elements of the initial stream, but
sorted in their natural order. If the type of elements on the stream is not comparable (the
type does not implement java.lang.Comparable, a java.lang.ClassCastExceptionis
thrown). And since we are going to use this method to get a stream of sorted elements,
we use findFirst() to get the first element in the stream. This method returns an
Optional<T>, because the stream might be empty.

List<String> pieces = List.of("some","of", "us
"eVerll) "here");
String first = pieces.stream().sorted().findFirst().get();

, 'we’re", "hardly",

System.out.println("First from sorted list: " + first);

This code prints ever because that is the first element in the sorted stream.

Intermediate Operation distinct and Terminal Operation
count

The distinct() method takes a stream and generates a stream with all the distinct
elements of the original stream. And because we need a terminal function, let’s use
count(); as the name says, this function counts the elements of the stream.

List<String> pieces = List.of("as","long", "as", "there", "is",
"you", "there", "is", "me");

long count = pieces.stream().distinct().count();

System.out.println("Elements in the stream: " + count);

If the code is run, the number printed is 6, because after removing the duplicate
terms (as, there, is), we are left with six terms.

306

CHAPTER 8 THE STREAM API

Intermediate Operation limit and Terminal Operations
min and max

The 1imit(..) method was used in this chapter before to transform a infinite stream into
a finite one. As it transforms a stream into another stream, clearly this is an intermediate
function. To see it in action, we will use a stream of integers and we’ll use as terminal
methods two mathematical functions: to calculate the minimum of the elements in the
stream - min() and to calculate the maximum of the elements fn the stream - max().

How to use these functions together is depicted in the following code snippet.

Stream<Integer> ints = Stream.of(5,2,7,9,8,1,12,7,2);
ints.limit(4).min(Integer::compareTo)

.ifPresent(min -> System.out.println("Min is: " + min));
// Prints "Min is: 2"
Stream<Integer> ints = Stream.of(s,2,7,9,8,1,12,7,2);
ints.limit(4).max(Integer::compareTo)

.ifPresent(max -> System.out.println("Max is: " + max));

// Prints "Max is: 9"

Terminal Operations sum and reduce

Let’s consider the scenario: we have a finite stream of Song values and we want to
calculate the sum of their durations. The code to do this is depicted in the following
listing, and the use of another stream terminal function that can be used only on
numeric streams.

Stream<Song> songs = StreamMedialoader.loadSongs();
Integer totalDuration = songs
.mapToInt(Song::getDuration)

.sum();

The same result can be obtained using the reduce(. .) function.

Stream<Song> songs = StreamMedialoader.loadSongs();
Integer totalDuration = songs
.mapToInt(Song::getDuration)
.reduce(0, (a, b) -> a + b);

307

CHAPTER 8 THE STREAM API

The reduce functions takes two arguments.

o Theidentity argument represented the initial version of the
reduction and the default result if there are no elements in the stream

e The accumulator function takes two parameters; the operation is
applied on to get a partial result (in this case is the addition of those
two elements)

So basically, every time an element of the stream is processed, the accumulator returns
a new value that is the result of adding the processed element with the previous partial
result. So, if the result of the process is a collection, the accumulator’s result is a collection,
so every time a stream element is processed a new collection would be created. This is
pretty inefficient, so in scenarios like this the collect function is more suitable.

Intermediate Operation peek

This function is special because it really doesn’t affect the stream results in any way.
The peek function returns a stream consisting of the elements of the stream it is called
on while also performing for each element the operation specified by its Consumer<T>
argument. This means that this function can be used to debug stream operations.

Let’s take our stream of Song instances and filter them by their duration. Select all the
ones with a duration >300 seconds, and then get their titles and collect them in a list. The
following code shows how to do this.

Stream<Song> songs = StreamMedialoader.loadSongs();
List<String> result = songs.filter(s -> s.getDuration() > 300)
.map(Song: :getTitle)
.collect(Collectors.tolList());

Before the map call, a peek call can be introduced to check if the filtered elements are the
ones you expect. Another peek call can be introduced after to inspect the mapped value.

Stream<Song> songs = StreamMedialoader.loadSongs();
List<String> result = songs.filter(s -> s.getDuration() > 300)
.peek(e -> System.out.println("\t Filtered value: " + e))
.map(Song: :getTitle)
.peek(e -> System.out.println("\t Mapped value: " + e))
.collect(Collectors.tolList());

308

CHAPTER 8 THE STREAM API

Intermediate Operation skip and Terminal Operations
findAny, anyMatch, allMatch, and noneMatch

These are the last operations discussed in this chapter, so they are coupled together
because the skip operation might affect the result of the others.

The findAny() returns an Optional<T> instance that contains the first element of
the stream or an empty Optional<T> instance when the stream is empty. When the
stream is parallel, the function returns a random element of the stream wrapped into an
Optional<T>. Because the stream of songs we've been using so far is not a parallel one,
we create a parallel stream by calling the intermediate function parallel().

Stream<Song> songs = StreamMedialoader.loadSongs();
Optional<Song> optSong = songs.parallel().findAny();
optSong.ifPresent(System.out: :println);

The anyMatch(. .) method receives an argument of type Predicate<T> and returns
a boolean true value if there is any elements in the stream that match the predicate, and
false otherwise. It works on parallel streams as well. The scenario the next code covers
is to return true id any of the songs in our stream has a title containing the word Paper.

Stream<Song> songs = StreamMedialoader.loadSongs();
boolean b = songs

.anyMatch(s -> s.getTitle().contains("Paper"));
System.out.println("Are there songs with title containing 'Paper'? " + b);

The code prints true because there is song on the list called Paper Dolls. But, if we
want to change that result, all we have to do is skip processing the first six elements in the
original stream by calling skip(6). Yes, this method works on parallel streams as well.

Stream<Song> songs = StreamMedialoader.loadSongs();
boolean b = songs.parallel()

-skip(6)

.anyMatch(s -> s.getTitle().contains("Paper"));
System.out.println("Are there songs with title containing \"Paper\"? " + b);

And so, if the first six elements in the original stream were not processed, now
the previous code returns false. There is another function that analyses all elements
of a stream checking if they all match a single predicate, and that method is called

309

CHAPTER 8 THE STREAM API

allMatch(..). In the next code sample, we check if all Song instances have duration
bigger than 300. The function returns a boolean, and the value is true of all Song
instances match the predicate and false otherwise. For our example, we are obviously
expecting a false value, because not all of our Song instances have the duration field
value bigger than 300.

Stream<Song> songs = StreamMedialoader.loadSongs();
boolean b = songs.allMatch(s -> s.getDuration() > 300);
System.out.println("Are all songs longer than 5 minutes? " + b);

The pair of this function is a function named noneMatch and does exactly the
opposite thing: takes a predicate as an argument and returns a boolean. The value of
this boolean is true if none of the stream elements match the predicate provided as
argument, and false otherwise. In the next code sample, we check using the noneMatch
if there is no Song instance with duration > 300 and we expect the result to be false.

Stream<Song> songs = StreamMedialoader.loadSongs();
boolean b = songs.noneMatch(s -> s.getDuration() > 300);
System.out.println("Are all songs shorter than 5 minutes? " + b);

Debugging Stream Code

The peek(. .) method can be used for a light debugging, more like logging the changes
that happen on stream elements between one stream method call and another. A more
advanced way to debug streams is provided by the Intelli] IDEA editor; starting on May
11, 2017, this editor includes a specialized plugin, called the Java Stream Debugger, for
stream debugging.*

I am assuming that you already have a version of Intelli] IDEA that is more recent
than 2017, so you should already have this plugin. To use it, you have to place a
breakpoint on the line where a stream processing chain is defined. Figure 8-2 shows
a piece of code representing the processing of a stream of Song instances executed in
debug and a breakpoint paused the execution in line 44. When the execution is paused
the Stream debugger view can be opened by clicking the button that is surrounded in the
red rectangle.

*Official blogpost from JetBrains, the company that created and maintains Intelli] IDEA https://
plugins.jetbrains.com/ plugin/9696-java-stream-debugger?platform=hootsuite

310

https://plugins.jetbrains.com/plugin/9696-java-stream-debugger?platform=hootsuite
https://plugins.jetbrains.com/plugin/9696-java-stream-debugger?platform=hootsuite
https://plugins.jetbrains.com/plugin/9696-java-stream-debugger?platform=hootsuite

CHAPTER 8 THE STREAM API

® © @ m java-byn [~/apress/work fiava-bgn] - .../chapterD8/stc/mainfjava/ [s/bgn/ch8/s nDebuggerDemo.java [chapter08_main]

Wz java-bgn | Iy chapter08) B src) g main) B java) Eu com) o apres A, , StreomDebuggerDeme ~ | b % G B Gt @ S mQ
% & MediaStreamTester java €' StreamDebuggerDemojava & Song java K SONgs.cev & SongT java @o -~
B Toudt Wi
B | 28 package com,apress.bgn.ch8; fl %
B 0

38 import ... -

SHE: =
3 % £
s 3 = @author Iuliana Cosmina |

since 1.8 bl

/! .g

» public class StreamDebuggerDemo { AR
> public static void main(String... args) { i

Stream<Song

songs = StreamMedialoader. loadSongs();

gTransformer: :upcaseTitle)
Jdistinct()
.mapl{SongTransformer: : turnburationToMinutes)
.sorted()
.collect(Collectors. tolist(})
.forEach(System.out::printin);

}
}
StreamDebuggerDemo
Debug: 5 StreamDebuggerDemo
& Ocbugger [E]Console »* = | 2 & 3 2 b §
» {%.] Frames =* = Varisbles

B "main"@1 in group B b ¢

[main:48, StreamDebuggerDemo (com.ap §
[
%

Figure 8-2. Debugging

LR ~ 4

<+ 00 Watches ++ B Me

+

If you click the debugger button shown in Figure 8-2, a pop-up window appears; it

has a tab for each operation of the stream processing. Figure 8-3 shows the tabs and their

methods underlined and linked to each other.

311

CHAPTER 8 THE STREAM API

40 */

41 b public class StreamDebuggerDemo {

42 b public static void main(String... args) { args: {}

Stream<Song> songs = StreamMedialoader.loadSongs(): songs: ReferencePipelinesHeadal197
"1

45 o (SongTransformer: :upcaseTitle) Stream<Song>

46 of

49 .collectiColleftors. tolist()) List<integer>

se of . forEach em,out::printin);

(e} Stream Trace

I smgs"E map || [E] map] [E] distinct E sorted IE cnilectl

i
20

- = Song@1290 = "Song(id=1, singer="John Mayer', title='"NEW LIGHT', duration=206, audioType=FLAC}"

» = Song@1291 = "Song{id=2, singer='John Mayer', title="MY STUPID MOUTH", duration=225, audioType=M4A}"

» = Song®1292 = "Song{id=3, singer="John Mayer', title="VULTURES', duration=247, audioType=FLAC}"

- = Song@1293 = "Song{id=4, singer="John Mayer', title="EDGE OF DESIRE', duration=333, audioType=MP3}" |
> = Song@1294 = "Song{id=5, singer='John Mayer', title='IN REPAIR', duration=372, audioType=MP3}"]
» = Song®@1295 = “Song{id=5, singer="Rob Thomas', title='"PAPER DOLLS', duration=185, audioType=MP3}"

» = Song®@1296 = "Song{id=7, singer='The Script', title='"MAD LOVE', duration=207, audioType=MP3}"

» = Song@1297 = "Songfid=8, singer='Seth MacFarlane’, title='"NO ONE EVER TELLS YOU', duration=244, audioType=MP
» = Song@1298 = "Song{id=9, singer="Nat King Cole', title="ORANGE COLORED SKY', duration=154, audioType=MP3}"

» = Song®@1299 = "Song{id=10, singer="Vertical Horizon', title='FOREVER', duration=246, audioType=MP3}"

» = Song®@1300 = “Song{id=11, singer="Mario Lanza', title="TEMPTATION', duration=141, audioType=M4A}"

» = Song®1301 = "Song{id=12, singer='Jack Radics’, title='"NO MATTER', duration=235, audioType=MP3}"

» = Song@1302 = "Song{id=13, singer="George Michael', title='FASTLOVE', duration=3086, audioType=MP3}"

» = Song@1303 = "Song{id=14, singer='Childish Gambino', title='"FREAKS AND GEEKS', duration=227, audioType=M4A}"

Flat Mode Close

Figure 8-3. The Java Stream Debugger window

In each of the tabs, the text box on the left contains the elements on the original
stream and on the text box on the right contains the resulting stream with its elements.
For operations that reduce the number of elements or change their order there are lines
from one set of elements to the other. The first map method transforms the song titles to
their uppercase versions. The second map method transforms the duration of the songs
in minutes and returns a stream of integers. The distinct method produces a new
stream that contains only the distinct elements, and this operation’s effect is depicted
nicely in Figure 8-4.

312

CHAPTER 8 THE STREAM API

® @ Stream Trace
[El songs [Elmap [Elmap [E] oistiret | [E] sorted [E] collect
20 distinct 5
» = Integer@1319 = 3 y + = Integer@1319 = 3
> = Integer@1319 = 3 = <+ = Integer@1320 = 4
P = Integer@1320 = 4 3 s ¢ = Integer@1321=56
» = Integer@1321=5 > = Integer@1322 = 6
- = Integer@1322 = 6 : ' > = integer@1323 = 2

- = Integer@1319 =3
» = Integer®1319 =3
Integer@1320 = 4
> Integer@1323 = 2
» = Integer@1320 = 4
> = Integer@1323 = 2
> = Integer@1319 = 3
> = Integer@1321=5
> = Integer@1319 = 3
b = Integer@1321=5
» = Integer@1322 = 6
» = Integer@1320 = 4
» = Integer@1319 =3
» = Integer@1321=5
> = Integer@1319 = 3

mn

Flat Mode Close
Figure 8-4. The distinct() operation in the Intelli] IDEA stream debugger

The next operation is sorted() that sort the entries on the stream returned by the
distinct() operation. The reordering of the elements and adding them to a new stream
is depicted in the debugger also and in Figure 8-5.

® @ Stream Trace

[El songs [El map [El map [E] distinct [E] sorted | [E] collect

5 sorted 5
> = Integer@®1319 =3 > = Integer@1323 =2
» = Integer@1320 = 4 » = Integer@1319 = 3
» = Integer@1321=5 > = Integer@1320 =4
~ = Integer@1322 =6 -——\%____ > = Integer@1321=5
> = Integer@1323 = 2 » = Integer@1322 = 6

Figure 8-5. The sorted() operation in the Intelli] IDEA stream debugger

313

CHAPTER 8 THE STREAM API

Of course, after inspecting the results in the debugger, even if you want to continue
the execution, this won’t be possible, because all elements in the original stream and the
resulting ones were consumed by the debugger, so the following exception is printed in
the console.

Connected to the target VM, address: '127.0.0.1:64083', transport: 'socket'
Exception in thread "main" java.lang.IllegalStateException:
stream has already been operated upon or closed
Disconnected from the target VM, address: '127.0.0.1:64083',
transport: 'socket'
at java.base/java.util.stream.AbstractPipeline.<init>AbstractPipe
line.java:203
at java.base/java.util.stream.ReferencePipeline.<init>ReferencePipe
line.java:94
at java.base/java.util.stream.ReferencePipeline$StatelessOp.<init>
ReferencePipeline.java:696
at java.base/java.util.stream.ReferencePipeline$3.<init>ReferencePi
peline.java:189
at java.base/java.util.stream.ReferencePipeline.
mapReferencePipeline.java:188
at chapter.eight/com.apress.bgn.ch8.StreamDebuggerDemo.
mainStreamDebuggerDemo. java:45

Summary

After reading this chapter and running the provided code samples, it should be clear
why the Stream API is so awesome. I like three things best: more compact and simple
code can be written to solve problems without losing readability (ifs and loops can be
avoided), parallel processing of data is possible without the boilerplate code required
before Java 8 and the fact that code can be written in Functional Programming style.
Also, the Stream API is more a declarative way of programming as most stream methods
take arguments of type Consumer<T>, Predicate<T>, or Function<T>, which declare what
should be done for each stream element, but the methods are not explicitly called from
the developer written code.

314

CHAPTER 8 THE STREAM API

This chapter also covered how to use Optional<T> instances to avoid

NullPointerExceptions and writing if statements.

After you finished reading this chapter, you should have a pretty good idea about the

following.

how to create sequential and parallel streams from collections

what empty streams are useful for

terms to remember about streams:

sequence of elements
predicate

consumer

supplier

method reference
source

aggregate operations
intermediate operation
terminal operation
pipelining

internal automatic iterations

how to create and use Optional instances

315

CHAPTER 9

Debugging, Testing,
and Documenting

Development work does not only require you to write design the solution for a problem
and write the code for it. To make sure your solution solves the problem, you have to test
it. Testing involves making sure every component making up your solution behaves as
expected in expected and unexpected situations.

The most practical way to test code is to inspect values of intermediary variables by
logging them; print them in the console only in specific situations.

When a solution is complex, debugging provides the opportunity to pause the
execution and inspect state of the variables. Debugging sometimes involves breakpoints
and requires an IDE. Breakpoints are points where the application pauses its execution,
and the inspection of variables can be performed.

After making sure your solution fits the requirements, you have to document it,
especially if the problem that is being solved is one that requires complex code to
solve it. Or if your solution might be a prerequisite for other applications, it is your
responsibility to explain other developers how to use it.

This chapter covers a few ways to do all these, because these are key talents for a
developer.

Debugging

Debugging is a process of finding and resolving defects or problems within a computer
program. There are more debugging tactics, and depending of the complexity of an
application, one or more can be used. The following is a list of those techniques.

o logging intermediary states of objects involved in the process and
analyzing log files

317

© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_9

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

o interactive debugging using breakpoints to pause the execution of the
program and inspect intermediary states of objects involved in the

process

o testing

e monitoring at the application or system level

e analysis of memory dumps item profiling, a form of dynamic
program analysis that measures the memory occupied by a program,

or CPU used, duration of method calls, and so forth.

Let’s start with the simplest way of debugging: logging.

Logging

In the real world, logging is a destructive process; it is the cutting and processing of trees
to produce timber. In software programming, logging means writing log files that can be
later used to identify problems in code. The simplest way to log information is to use the

System.out.print method family, as depicted in Figure 9-1.

System.out.print(i+ " "));

m

m

m

m

m

m

m

m

m

m

m

println(int x)
print (boolean b)
print (char c)
print (int i)
print(long 1)
print (float f)
print (double d)
print (char([] s)
print (String s)
print (Object obj)
println(char x)

Figure 9-1. System.out.print class family

318

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

For the examples in this chapter, we use a hierarchy of classes that provide methods
to sort integer arrays. The class hierarchy is depicted in Figure 9-2.

1 IntSorter
m = sort(int[], int, int) void
m - serttintdy void

© & HeapSort € = MergeSort
m = sort(int[], int, int) void m = sort(int[], int, int) void
m & sort(int[]) void

m & merge(int[], int, int, int) void

m & puildHeap(int[], int, int) void

© = QuickSort © % InsertionSort
m = sort(int[], int, int) void m = sort(int[], int, int) void
m & partition(int[], int, int) int m & sort(int[]) void

Figure 9-2. Sorting class hierarchy

We'll take first the MergeSort class and add System.out.print statements to log
the steps of the algorithm. Merge sort is the name of a sorting algorithm with a better
performance than bubble sort, and it works by splitting the array into two halves, then
into smaller pieces, until it gets to the arrays of two elements that can be easily sorted.
Then it starts merging the array pieces. This approach, of splitting the array repeatedly
until sorting becomes a manageable operation is called Divide et Impera also known
as divide and conquer. There are more algorithms that follow the same approach for
solving a problem and merge sort is only the first of them that is covered in this book.
Figure 9-3, shows what happens in every step of the merge-sort algorithm that we are
going to implement.

319

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

2]
o | [0
fn S
sort(0,2) > t(1,1) —>]
e El \II :zn‘(z 2> merge(0,2,1) --> \Il E’ EI

ort(0,1) --
T B 0 o [E] [e DEIEIEE]

B
e i
S
@ i3] sort(4,4) > W@G(3,4,3)-->|Z|E| |

Figure 9-3. Merge sort

In each step of the algorithm the middle of the array is identified, and as long as the
start index of the array the low value is smaller than the end index of the array to sort,
the high value, we further split the array by calling the sort(..) method until we get
to an array with one element. That is when the merge (. .) method is called, aside from
merging pieces of the array, it also sorts them during the merging. To write the code, we
need to implement the two methods.

Listing 9-1. Logging with System.out.print
package com.apress.bgn.ch9.algs;
public class MergeSort implements IntSorter {

public void sort(int[] arr, int low, int high) {
if (low < high) {
int middle = (low + high) / 2;
sort(arr, low, middle);
sort(arr, middle + 1, high);
merge(arr, low, middle, high);

320

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

}

private void merge(int arr[], int low, int middle, int high) {
int leftlLength = middle - low + 1;
int rightLength = high - middle;

int left[] = new int[leftLength];
int right[] = new int[rightLength];

for (int i = 0; i < leftlLength; ++i) {
left[i] = arr[low + i];

}

for (int i = 0; i < rightlLength; ++i) {
right[i] = arr[middle + 1 + i];

}

int i

0, j =0;

int k = low;
while (i < leftLength & j < rightlength) {
if (left[i] <= right[j]) {
arr[k] = left[i];
it+;
} else {
arr[k] = right[j];
J+t;
}
k++;

}

while (i < leftLength) {
arr[k] = left[i];
i++;
k++;

}

while (j < rightLength) {
arr[k] = right[j];

321

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

J+t;
k++;

This code might look scary, but it does exactly what is depicted in Figure 9-3; we just
need a lot of variables to refer all the indexes we are using to arrange our elements in the
proper order. To make sure our solution is properly implemented, it would be useful to
see the values each method is called with and the array pieces that are being handled.
We can do this by simply modifying our methods and adding a few System.out.print
method calls.

package com.apress.bgn.ch9.algs;
public class MergeSort implements IntSorter {
public void sort(int[] arr, int low, int high) {

System.out.print("Call sort of " +
for (int i = low; i <= high; ++i) {
System.out.print(arr[i] + " ");

:["+ low+ " "+ high + "] ");

}

System.out.println();

if (low < high) {
int middle = (low + high) / 2;
sort(arr, low, middle);
sort(arr, middle + 1, high);
merge(arr, low, middle, high);

}

private void merge(int arr[], int low, int middle, int high) {
int leftlength = middle - low + 1;
int rightlength = high - middle;

int left[] = new int[leftLength];
int right[] = new int[rightLength];

322

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

for (int i = 0; i < leftLength; ++i) {
left[i] = arr[low + i];

}

for (int i = 0; i < rightlLength; ++i) {
right[i] = arr[middle + 1 + i];

}

int 1

0, j=0;

int k = low;
while (i < leftLength & j < rightlLength) {
if (left[i] <= right[j]) {
arr[k] = left[i];
it+;
} else {
arr[k] = right[j];
J++s
}
k++;

}

while (i < leftlLength) {
arr[k] = left[i];
i++;
k++;

}

while (j < rightLength) {
arr[k] = right[j];
J++s
k++;

}

System.out.print("Called merge of: [

+ low

+ + high + " " + middle + "], ");

for (int z = low; z <= high; ++z) {
System.out.print(arr[z] + " ");

323

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

System.out.println();

}
}
To test the output we need a class containing amain(..) method to execute the
algorithm.

package com.apress.bgn.ch9;

import com.apress.bgn.ch9.algs.IntSorter;
import com.apress.bgn.ch9.algs.MergeSort;

import java.util.Arrays;
public class SortingDemo {

public static void main(String... args) {
int arr[] = {5:114)2)3}3

IntSorter mergeSort = new MergeSort();
mergeSort.sort(arr, 0, arr.length-1);

System.out.print("Sorted: ");
Arrays.stream(arr).forEach(i -> System.out.print(i+ " "));

If we run the preceding class, the intermediary values handled by sort(..) and
merge(..) calls are printed in the console.

Call sort of : [04] 51423
Call sort of : [0 2] 514
Call sort of : [0 1] 51

Call sort of : [0 0] 5

Call sort of : [1 1] 1

Called merge of: [0 1 0], 15
Call sort of : [2 2] 4
Called merge of: [0 2 1], 1 45

324

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

Call sort of : [3 4] 23

Call sort of : [3 3] 2

Call sort of : [4 4] 3

Called merge of: [3 4 3], 2 3
Called merge of: [0 4 2], 123 45
Sorted: 12345

You can see that the console output matches the algorithm steps depicted in
Figure 9-3; that output is clearly proof that the solution works as expected. But, there is
a problem with the code now. Every time the sort(..) method is called, the output is
printed, and if the sorting is only one step in a more complex solution, the output is not
really necessary. It can even pollute the output of the bigger solution. Also, if the array
is big, printing that output could affect the performance of the overall solution. So, a
different approach should be considered, one that could be customized and decision
made if the output should be printed or not. This is where logging libraries come in.

Logging with JUL

The JDK provides its own logger classes that are hosted under package java.util.
logging that is why the logging module provided by the JDK is also called JUL. A Logger
class instance is used to log messages. The logger instance should be provided a name
when is created and log messages are printed by calling specialized methods that print
messages at different levels. For the JUL module, the levels and their scope are listed
next, but other logging libraries have similar logging levels.

e OFF - should be used to turn off all logging
o SEVERE - is the highest level, message indicates a serious failure

o WARNING - indicates that this message is being printed because of a
potential problem

e INFO - indicates that this is an informational message

o CONFIG - indicates that this is a message containing configuration
information

o FINE - indicates that this a message providing tracing information

o FINER - indicates that this is a fairly detailed tracing message

325

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

o FINEST - indicates that this is a very detailed tracing message
e ALL - all log messages should be printed

Loggers can be configured using XML or properties files and their output can be
directed to external files. For the code sample introduced previously, let’s replace all
System.out.print method calls with logger calls. Let’s start with the SorterJulDemo class.

package com.apress.bgn.ch9;

import com.apress.bgn.ch9.algs.IntSorter;
import com.apress.bgn.ch9.algs.MergeSort;

import java.util.Arrays;
import java.util.logging.logger;

public class SortingJulDemo {

private static final Logger log =
Logger.getLogger(SortingJulDemo.class.getName());

public static void main(String... args) {
int arr[] = {5)114)2)3};

log.info("Sorting an array with merge sort");
IntSorter mergeSort = new MergeSort();
mergeSort.sort(arr, 0, arr.length-1);

StringBuilder sb = new StringBuilder("Sorted: ");
Arrays.stream(arr).forEach(i -> sb.append(i).append(" "));
log.info(sb.toString());

In the code sample, a Logger instance was created by calling the static method
Logger.getLogger(..). The recommended practice is for the logger to be named as
the class it is logging messages for. Without any additional configuration, every message
printed with log.info(..) is printed prefixed with the full system date, class name,
and method name in front of it. Let’s replace all System.out.print method calls with
logger calls in the MergeSort class, and introduces a StringBuilder to construct longer
messages before writing them with log.info(..).

326

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING
package com.apress.bgn.ch9.algs;
import java.util.logging.logger;

public class MergeSort implements IntSorter {
private static final Logger log =
Logger.getLogger(SortingJulDemo.class.getName());

public void sort(int[] arr, int low, int high) {
StringBuilder sb = new StringBuilder("Call sort of ")
.append(": [")
.append(low).append(
.append("] ");
for (int i = low; i <= high; ++i) {
sb.append(arr[i]).append(" ");

) .append(high)

}
log.info(sb.toString());

if (low < high) {
int middle = (low + high) / 2;

//sort lower half of the interval
sort(arr, low, middle);

//sort upper half of the interval
sort(arr, middle + 1, high);

// merge the two intervals
merge(arr, low, middle, high);

}

private void merge(int arr[], int low, int middle, int high) {

StringBuilder sb = new StringBuilder("Called merge of: [")
.append(low).append(" ").append(high).append(" ")
.append(middle)
.append("],) ");
for (int z = low; z <= high; ++z) {
sb.append(arr[z]).append(" ");

327

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

}

log.info(sb.toString());

Jul 21, 2018

Jul

Jul

Jul

Jul

Jul

Jul

Jul

Jul

Jul

Jul

Jul

Jul

Jul

Jul

328

21,

21,

21,

21,

21,

21,

21,

21,

21,

21,

21,

21,

21,

21,

INFO:

2018

INFO:

2018

INFO:

2018

INFO:

2018

INFO:

2018

INFO:

2018

INFO:

2018

INFO:

2018

INFO:

2018

INFO:

2018

INFO:

2018

INFO:

2018

INFO:

2018

INFO:

2018

INFO:

And now let’s run the code and analyze the console output.

11:17:30 PM com.apress.bgn.ch9.SortingJulDemo

Sorting an array with merge sort
apress.bgn.ch9.algs.
[04] 51423
apress.bgn.ch9.algs.
[02] 514
apress.bgn.ch9.algs.

11:17:

Call
11:17
Call

11:17:

Call

11:17:

Call
11:17
Call

11:17:

30 PM com.
sort of :

:30 PM com.

sort of :
30 PM com.
sort of :
30 PM com.
sort of :

:30 PM com.

sort of :
30 PM com.

[01] 51

apress.bgn.ch9.algs.

[0 0] 5

apress.bgn.ch9.algs.

[11] 1

apress.bgn.ch9.algs.
Called merge of: [0 1 0],) 15
11:17:30 PM com.apress.bgn.ch9.algs.

Call sort of : [2 2] 4

11:17:30 PM com.apress.bgn.ch9.algs.
Called merge of: [0 2 1],) 1 45

11:17:30 PM com.apress.bgn.ch9.algs.

Call

11:17:

Call
11:17
Call

11:17:

sort of :

30 PM com.apress.bgn.ch9.algs.

sort of :

sort of :

30 PM com.apress.bgn.ch9.algs.
Called merge of: [3 4 3],) 2 3
11:17:30 PM com.apress.bgn.ch9.algs.

[34] 23

[33] 2

:30 PM com.apress.bgn.ch9.algs.

[4 4] 3

MergeSort

MergeSort

MergeSort

MergeSort

MergeSort

MergeSort

MergeSort

MergeSort

MergeSort

MergeSort

MergeSort

MergeSort

MergeSort

Called merge of: [0 4 2],) 12345
11:17:30 PM com.apress.bgn.ch9.SortingJulDemo
Sorted: 123 45

main

sort

sort

sort

sort

sort

merge

sort

merge

sort

sort

sort

merge

merge

main

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

The way log messages are written is decided by a special class called a formatter. When
an explicit configuration is missing, the default formatter used is java.util.logging.
SimpleFormatter that prints log messages exactly as shown in the previous listing. The
messages are printed by default in the console and the class used for that is called a handler,
and is java.util.logging.ConsoleHandler in this case. Both of these are configurable and
can be replaced via a configuration file with more advanced classes or custom classes.

The previous log seems a little crowded and is not really clear. So, we must refine
it by adding a proper configuration. The StreamFormatter class contains a field
named format that can be initialized with a template for how the log messages should
be written. So, let’s remove the class and method name altogether because we have
really specific messages in place anyway. The following code listing contains a simple
configuration for JUL.

handlers=java.util.logging.ConsoleHandler

.level=ALL

java.util.logging.ConsoleHandler.level=ALL
java.util.logging.ConsoleHandler.formatter=java.util.logging.
SimpleFormatter

java.util.logging.SimpleFormatter.format=[%1$tF %1$tT] [%4$-4s] %5%s %n

This file should be loaded at the start of the execution using an instance of java.
util.logging.LogManager and calling the readConfiguration(..) method, so the
SortingJulDemo class is modified as follows.

public class SortingJulDemo {

private static final Logger log =
Logger.getLogger(SortingJulDemo.class.getName());

static{

try {
LogManager logManager = LogManager.getLogManager();
logManager.readConfiguration (

new FileInputStream("./chapter09/src/main/resources/logging.properties"));
} catch (IOException exception) {
log.log(Level .SEVERE, "Error in loading configuration",exception);

329

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

public static void main(String... args) {
// same code as before

If we run our example again, the output changes to

[2018-07-21 23:58:29] [INFO] Sorting an array with merge sort
[2018-07-21 23:58:29] [INFO] Call sort of : [0 4] 51423
[2018-07-21 23:58:29] [INFO] Call sort of : [0 2] 51 4
[2018-07-21 23:58:29] [INFO] Call sort of : [0 1] 5 1
[2018-07-21 23:58:29] [INFO] Call sort of : [0 0] 5
[2018-07-21 23:58:29] [INFO] Call sort of : [1 1] 1
[2018-07-21 23:58:29] [INFO] Called merge of: [0 1 0],) 1 5
[2018-07-21 23:58:29] [INFO] Call sort of : [2 2] 4
[2018-07-21 23:58:29] [INFO] Called merge of: [0 2 1],) 1 4 5
[2018-07-21 23:58:29] [INFO] Call sort of : [3 4] 2 3
[2018-07-21 23:58:29] [INFO] Call sort of : [3 3] 2
[2018-07-21 23:58:29] [INFO] Call sort of : [4 4] 3
[2018-07-21 23:58:29] [INFO] Called merge of: [3 4 3],) 2 3
[2018-07-21 23:58:29] [INFO] Called merge of: [0 4 2],) 1 23 45
[2018-07-21 23:58:29] [INFO] Sorted: 1 2 3 4 5

Aside from SimpleFormatter, there is another class that can be used to format log
messages named XMLFormatter that formats the messages as XML(Extensible Markup
Language). The XML format of writing data is defined by a set of rules for encoding the
data that is both human-readable and machine readable. Also, the set of rules makes it
easy to validate and find errors.! And since for XML it makes no sense to be written in
the console, let’s use the FileHandler class to save the logs to a file. The modifications to
add to the configuration file are shown next.

handlers=java.util.logging.FileHandler
java.util.logging.FileHandler.pattern=chaptero9/out/chaptero9-log.xml
.level=ALL

"More about XML here: https://en.wikipedia.org/wiki/XML

330

https://en.wikipedia.org/wiki/XML

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

java.util.logging.ConsoleHandler.level=ALL
java.util.logging.ConsoleHandler.formatter=java.util.logging.XMLFormatter

With that configuration, when running the code, a chapter09-1log.xml is
generated located under chapter09/out and contains entries that look similar to the
one depicted next.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE log SYSTEM "logger.dtd">
<log>
<record>
<date»2018-07-21T723:50:52.905961Z</date>
<millis>1532217052905</millis>
<nanos»>961000</nanos>
<sequence>0</sequence>
<logger>com.apress.bgn.ch9.SortingJulDemo</logger>
<level>INFO</level>
<class>com.apress.bgn.ch9.SortingJulDemo</class>
<method>main</method>
<thread>1</thread>
<message>Sorting an array with merge sort</message>
</record>

</log>

The logging output can be customized also by providing a custom class, the only
condition is for the class to extend the java.util.logging.Formatter class, or any of its
JDK subclasses.

In the previous sample, we only had log. info calls because the code is basic
and leaves no room for error; but let’s modify the code to allow the user to insert the
elements of the array. This requires code to be written to treat situations when the user
does not insert proper data. Code to treat the case when the user does not provide any
data and code to treat the case when user inserts bad data should be added to the class.
If the user does not provide any data, a SEVERE log message should be printed and the

application should terminate. If the user introduces invalid data, the valid data should be
used and warning should be printed for elements that are not integers.

331

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

This means that the SortingJulDemo class becomes

package com.apress.bgn.ch9;

import com.apress.bgn.ch9.algs.IntSorter;

import com.apress.bgn.ch9.algs.MergeSort;

import java.io.FileInputStream;

import java.io.IOException;

import java.util.Arraylist;

import java.util.Arrays;

import java.util.Llist;

import java.util.logging.Level;

import java.util.logging.LogManager;

import java.util.logging.logger;

public class SortingJulDemo {

332

private static final Logger log =
Logger.getLogger(SortingJulDemo.class.getName());

static {
try {
LogManager logManager = LogManager.getLogManager();
logManager .readConfiguration(new FileInputStream
("./chapter09/logging-jul/src/main/resources/logging.
properties"));
} catch (IOException exception) {
log.log(Level.SEVERE, "Error in loading configuration",
exception);

}

public static void main(String... args) {
if (args.length == 0) {
log.severe ("No data to sort!");
return;

}
int[] arr = getInts(args);

}

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

final StringBuilder sb = new
StringBuilder("Sorting an array with merge sort: ");

Arrays.stream(arr).forEach(i -> sb.append(i).append(" "));
log.info(sb.toString());

IntSorter mergeSort = new MergeSort();
mergeSort.sort(arr, 0, arr.length - 1);

final StringBuilder sb2 = new StringBuilder("Sorted: ");
Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));
log.info(sb2.toString());

private static int[] getInts(String[] args) {

List<Integer> list = new ArraylList<>();
for (String arg : args) {

try {
int toInt = Integer.parselnt(arg);
list.add(toInt);

} catch (NumberFormatException nfe) {

log.warning ("Element " + arg + " is not an

integer and cannot be added to the array!");

}

int[] arr = new int[list.size()];

int j = 0;

for (Integer elem : list) {
arr[j++] = elem;

}

return arr;

333

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

The arr array is no longer hardcoded in the main(. .) method, but the values that
this method receives as arguments become the array to be sorted and are converted
from String values to int values by the toInts(..) method. The person executing
this program can provide the arguments from the command line, but because we are
using Intelli] IDEA, there is an easier way to do that. If you now run the program without
providing any arguments, the following is printed in the console.

[2018-07-22 01:34:37] [SEVERE] No data to sort!

The execution stops right there because there is nothing to sort. And since you've
probably run this class a few times, Intelli] probably created a launcher configuration that
you can customize and provide arguments for the execution. E9-4, dit your configuration
as shown in Figure 9-4 by adding the recommended values as program arguments.

[g mo.java [chapter09_main]
s) [0 bgn) [e ch9) @& SortingDemo A Sortingbemo ~ b #H G Git &

11 logging. properties. '8} ConsoleHandler java I} FlieHandier java & Edit Configurations...

& SortingDema java
- y H Save 'SortingDemo' Configuration

* Execu 5 program.=ps
ce, g HelloWorld

1. {8 e.sp> SortingDeme
* Uses the {@link MergeSort#sort{int(], int, int)} to sort the array.

§ java-bgn [javadoc]
* .@m;r',m args program argueents java-bgn [aggregateJavadocs]

42 */ i i 4
i3 k@ public static veid main(String... args) { Jiabenichapise levadoc]
e @ Run/Debug Configurations
+ - B R F - 1 Name: SartingDemo Share Single instance only
v 71 Application
HellaWaorld Configuration Code Coverage Logs
SortingDemo : ;
2 ﬂ’Gladlel 9 Main class: com.epress.bgn.ch9.SortingDemao
» # Templates VM options:
Program arguments: 5232blds4
Working directory: [Usersfiulianacosminalap fworksg bg n

Environment variables:

Use classpath of module: & chapter09_main
Include dependencies with "Provided" scope

JRE: Default {10 - SOK of ‘chapter09_main' module) B -

Shorten command line: user-local default: none - java [options] classname [args H

Enable capturing form snapshots

~ Before launch: Build, Activate tool window
A Build
+

Show this page Activate tool window

2 Cancel Apply “

Figure 9-4. Intelli] IDEA launcher for the SortingJulDemo class

334

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

Then, run the program and inspect the console log. You see a few extra log messages
there with severity WARNING that are printed for values given as arguments that cannot
be converted to int.

[2018-07-22 01:43:35] [WARNING] Element a is not an integer and cannot be
added to the array!
[2018-07-22 01:43:35] [WARNING] Element b is not an integer and cannot be
added to the array!
[2018-07-22 01:43:35] [WARNING] Element ds is not an integer and cannot be
added to the array!
2018-07-22 01:43:35
2018-07-22 01:43:35
2018-07-22 01:43:35
2018-07-22 01:43:35
2018-07-22 01:43:35
2018-07-22 01:43:35
2018-07-22 01:43:35

[] [INFO] Sorting an array with merge sort: 53 2 1 4
[]
[]
[]
[]
[]
[]
[2018-07-22 01:43:35]
[]
[]
[]
[]
[]
[]
[]

[

[INFO] Call sort of : [0 4] 5321 4

[INFO] Call sort of : [0 2] 53 2

[INFO] Call sort of : [0 1] 5 3

[INFO] Call sort of : [0 O] 5

[INFO] Call sort of : [1 1] 3

[INFO] Called merge of: [0 1 0],) 35

[INFO] Call sort of : [2 2] 2
2018-07-22 01:43:35] [
2018-07-22 01:43:35] [
2018-07-22 01:43:35] [
2018-07-22 01:43:35] [
2018-07-22 01:43:35] [
2018-07-22 01:43:35] [
2018-07-22 01:43:35] |

INFO] Called merge of: [0 2 1],) 2 3 5
INFO] Call sort of : [3 4] 14

INFO] Call sort of : [3 3] 1

INFO] Call sort of : [4 4] 4

INFO] Called merge of: [3 4 3],) 1 4

INFO] Called merge of: [0 4 2],) 123 45
INFO] Sorted: 1 23 4 5

Writing logs can affect performance, and in some cases, like when the application
is running in a production system, we might want to refine the logging configuration
to only important log messages that notify the risk of a problem and skip informational
messages. In the previous configuration examples, there was a configuration line that
enabled all log messages to be printed.

handlers=java.util.logging.ConsoleHandler

.level=ALL

java.util.logging.ConsoleHandler.level=ALL
java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter
java.util.logging.SimpleFormatter.format=[%1$tF %1$tT] [%4$-4s] %5%s %n

335

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

If we change the value of that property to OFFE nothing is printed. The log levels have
integer values assigned to them, and those values can be used to compare the severity
of the messages. As a rule, if you configure a certain level of messages, more severe
messages are printed. So, if we set that property to INFO, warning messages are printed.
The values for the severity levels of messages are defined in the java.util.logging.
Level class, and if you open that class in your editor, you can see the integer values
assigned to each of them.

public static final Level OFF = new Level("OFF",Integer.MAX VALUE,
defaultBundle);

public static final Level SEVERE = new Level("SEVERE",1000,
defaultBundle);

public static final Level WARNING = new Level("WARNING", 900,
defaultBundle);

public static final Level INFO = new Level("INFO", 800, defaultBundle);
public static final Level CONFIG = new Level("CONFIG", 700,
defaultBundle);

public static final Level FINE = new Level("FINE", 500, defaultBundle);
public static final Level FINER = new Level("FINER", 400,
defaultBundle);

public static final Level FINEST = new Level("FINEST", 300,
defaultBundle);

So, in the previous configuration, if we change .level=ALL to .level=WARNING, then
we would expect to see all log messages of levels WARNING and SEVERE. If we run the
SortingJulDemo class with the previous arguments, we should see only the WARNING level
messages.

[2018-07-22 15:46:19] [WARNING] Element a is not an integer and cannot be
added to the array!
[2018-07-22 15:46:19] [WARNING] Element b is not an integer and cannot be
added to the array!
[2018-07-22 15:46:19] [WARNING] Element ds is not an integer and cannot be
added to the array!

336

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

To define log messaging formatting there are more ways: system properties can be
used or programmatically a formatter can be instantiated and set on a logger instance.

It really depends on the specifics of the application, but you might consider other
options for logging, because JUL is known for its weak performance in multithreaded
environments and most production applications use some other libraries. But when
Java 7 was released, one of the announced features was improvements to the JUL module,
so it might deserve a chance nowadays.

Another thing you have to take into account is that if the application you are building
is a complex one, with a lot of dependencies, these dependencies might use different
logging libraries, how do you configure and use them all? This is where a logging facade
proves useful. And the next section shows you how to use the most renowned Java
logging facade: SLF4].

Logging with SLF4J and Logback

The most renowned Java logging facade is SLF4]J? that serves as a logging abstraction for
various logging frameworks. This means that you use the SLF4J classes, and behind the
scenes all the work is done by a logging concrete implementation found in the classpath.
The best part? You can change the logging implementation anytime, and your code still
compiles and executes correctly, and there is no need to change anything in it.

In the code samples covered until now in this chapter, the code is seriously tied to
JUL, if we want for some reason to change the logging library, we need to change the
existing code as well. The first step is to change our code to use the SLF4] classes. Another
advantage of using SLF4] is that the configuration is automatically read if the logging
configuration file is on the classpath. So, the LogManager initialization block that we
needed for JUL is not needed anymore, as long as the configuration file is named according
to the standard of the concrete logging implementation used. So, let’s see the code first.

package com.apress.bgn.ch9;

import org.slf4j.Logger;
import org.slf4j.lLoggerFactory;

import java.util.Arrays;
import java.util.logging.logger;

Simple Logging Facade for Java (SLF4]) official site https://www.s1f4j.org/
337

https://www.slf4j.org/

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING
public class SortingJulDemo {

private static final Logger log =
LoggerFactory.getlLogger (SortingS1f4jDemo.class);

public static void main(String... args) {
if (args.length == 0) {
log.error ("No data to sort!");
return;

}
int[] arr = getInts(args);

final StringBuilder sb = new StringBuilder
("Sorting an array with merge sort: ");

Arrays.stream(arr).forEach(i -> sb.append(i).append(" "));
log.debug (sb.toString());

IntSorter mergeSort = new MergeSort();
mergeSort.sort(arr, 0, arr.length - 1);

final StringBuilder sb2 = new StringBuilder("Sorted: ");
Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));

log.info (sb2.toString());

As you've probably noticed, the methods we are calling are a little bit different, which
is because SLF4] defines an API that maps to the concrete implementation, but the
methods depending on their names they are used to print log messages with specific
purposes and at specific levels. I'll list them and provide a short explanation for each.

e info.error(..) logs messages at the ERROR level; usually these
are messages that are used when there is a critical failure of the
application and normal execution cannot continue. There is more
than one form for this method, and exceptions and objects can be
passed as arguments to it so that the state of the application at the
moment of the failure can be assessed.

338

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

o info.warn(..) logs messages at the WARN level; usually these
messages are printed to notify that the application is not functioning
normally and there might be reason to worry, in the same way as
the previous method, there is more than one form of for it, and
exceptions and objects can be passed as arguments to better assess
the current state of the application.

o log.info(..) logs messages at the INFO level; this type of messages
is informational to let the user know that everything is OK.

o info.debug(..) logs messages at the DEBUG level; usually these
messages are used to print intermediary states of the application and
to check that things are going as expected; and in case of a failure,
you can trace the evolution of the application objects.

o log.trace(..) logs messages at the TRACE level; this type of
messages is informational of a very low importance.

The logging concrete implementation used for this example is called Logback,?
which was chosen because it is the only library that works with SLF4] after the modules
were introduced in Java 9. Logback is viewed as the successor of Log4j, another popular
logging implementation, and it makes sense since the team that created it also worked
on Log4j.* Logback implements SLF4] natively, so there is no need to add another bridge
library. And it is faster because the Logback internals have been rewritten to perform
faster on critical execution points. After modifying our classes to use SLF4], all we have to
do is add Logback as a dependency of our application and add a configuration file under
the resources directory. The configuration file can be written in XML or Groovy. The
standard requires for it to be named logback.xml. The next listing depicts the contents
of this file for this sections’ example.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

<appender name="console" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>%d{HH:mm:ss.SSS} %-5level %logger{5} - %msgkn</pattern>

SLogback official site https://logback.qos.ch
‘Log4j official site https://logging.apache.org/log4]j

339

https://logback.qos.ch/
https://logging.apache.org/log4j

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

</encoder>
</appender>

<logger name="com.apress.bgn.ch9" level="debug"/>

<root level="info">
<appender-ref ref="console" />
</root>
</configuration>

The ch.qos.logback.core.ConsoleAppender class is used for writing log messages
in the console and the <pattern> element defines the format of the log messages.
Logback can format fully qualified class names by shortening package names to their
initials thus, it allows for a compact logging without losing information. This makes
Logback one of the favorite logging implementation of the Java development world at the
moment.

The logging calls in the MergeSort class were all replaced with log.debug(. .)
because these messages are intermediary and not really informational, just samples of
the state of the objects used by the application during the execution of the process. The
general logging level of the application can be set using a <root> element to the desired
level, but different logging levels can be set for classes or packages using <logger>
elements.

So, if we run the SortingS1t4jDemo class with the previous configuration on the
classpath, this is what is printed:

19:38:57.950 WARN c.a.b.c.SortingS1f4jDemo -

Element a is not an integer and cannot be added to the array!
19:38:57.951 WARN c.a.b.c.SortingS1f4jDemo -

Element b is not an integer and cannot be added to the array!
19:38:57.951 WARN c.a.b.c.SortingS1f4jDemo -

Element ds is not an integer and cannot be added to the array!
19:38:57.953 DEBUG c.a.b.c.SortingS1f4jDemo - Sorting an array with merge
sort: 53214

19:38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [0 4] 53214
19:38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [0 2] 53 2
19:38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [0 1] 5 3
19:38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [0 0] 5

340

19:
19:
19:
19:
19:
19:
19:
19:
19:
19:

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [1 1] 3

38:57.953 DEBUG c.a.b.c.a.MergeSort - Called merge of: [0 1 0],) 3 5
38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [2 2] 2

38:57.953 DEBUG c.a.b.c.a.MergeSort - Called merge of: [0 2 1],) 2 3 5
38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [3 4] 1 4
38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [3 3] 1

38:57.953 DEBUG c.a.b.c.a.MergeSort - Call sort of : [4 4] 4

38:57.954 DEBUG c.a.b.c.a.MergeSort - Called merge of: [3 4 3],) 1 4
38:57.954 DEBUG c.a.b.c.a.MergeSort - Called merge of: [0 4 2],) 12345

38:57.954 INFO c.a.b.c.SortingS1f4jDemo - Sorted: 1 2 3 4 5

The fully qualified class name com.apress.bgn.ch9.SortingS1f4jDemo was

shortened to c.a.b.c.SortingS1f4jDemo.

The configuration file can be provided to the program as a VM argument, which

means logging format can be configured externally. When launching the class, use

-Dlogback.configurationFile=\temp\ext-logback.xml as a VM argument.

Logback can direct output to a file as well; all we have to do is add a configuration

using the ch.qos.logback.core.FileAppender class and direct the output to the file by

adding an <appender> element in the <root> configuration.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

<appender name="file" class="ch.qos.logback.core.FileAppender">
<file>chapter09/logging-slf4j/out/output.log</file>
<append>true</append>
<encoder>
<pattern>%d{HH:mm:ss.SSS} %-5level %logger{5} - %msgkn</pattern>
</encoder>
</appender>

<appender name="console" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<charset>UTF-8</charset>
<pattern>%d{HH:mm:ss.SSS} %-5level %logger{5} - %msgkn</pattern>
</encoder>
</appender>

341

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING
<logger name="com.apress.bgn.ch9" level="debug"/>

<root level="info">
<appender-ref ref="file"/>
<appender-ref ref="console" />
</root>
</configuration>

In this example, we kept the original configuration because I wanted to give you a
working example of log messages written to two destinations at once. But what if the log
file becomes too big to open? Well, there’s an approach for that. We can use a different
class, which can be configured to write a file to a configured limit in size and then start
another file. This class is named ch.qos.logback.core.rolling.RollingFileAppender
and requires two arguments: an instance of a type that implements ch.qos.logback.
core.rolling.RollingPolicy, which provides functionality to write a new log file (also
called a rollover) and an instance of a type that implements ch.qos.logback.core.
rolling.TriggeringPolicy that configures the conditions under which the rollover
happens.

Also, a single instance of a type that implements both of the interfaces can configure
the logger. Rolling over a log file means that the log file is renamed according to the
configuration; usually, the last date that the file was accessed is added to its name,
and a new log file is created, with the log file named configured (without any date
information).

<?xml version="1.0" encoding="UTF-8"?>
<configuration scan="true">

<appender name="r_file" class="ch.qos.logback.core.rolling.
RollingFileAppender">
<file>chapter09/logging-slf4j/out/output.log</file>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<fileNamePattern>
chapter09/logging-slf4j/out/output_%d{yyyy-MM-dd}.%i.log
</fileNamePattern>

342

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

<timeBasedFileNamingAndTriggeringPolicy
class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
<maxFileSize>10MB</maxFileSize>

</timeBasedFileNamingAndTriggeringPolicy>

<maxHistory>30</maxHistory>

</rollingPolicy>

<encoder>
<charset>UTF-8</charset>
<pattern>%d{HH:mm:ss.SSS} %-5level %logger{5} - %msgkn</pattern>
</encoder>
</appender>

<appender name="console" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>%d{HH:mm:ss.SSS} %-5level %logger{5} - %msgkn</pattern>
</encoder>
</appender>

<logger name="com.apress.bgn.ch9" level="debug"/>

<root level="info">
<appender-ref ref="r file"/>
<appender-ref ref="console" />
</root>
</configuration>

So, the <file> element configures the location and the name of the log file. The
<rollingPolicy> element configures the name the log file receive when log messages
no longer be written in it using the <fileNamePattern>. In the previous configuration,
the output.log file is renamed to output_2018-07-22.10og, for example, and then a new
output.log file is created daily. The <timeBasedFileNamingAndTriggeringPolicy>
configures how big the output. log file should be before a new file is written. The
configured size in the previous example is 10 MB. And if a log file grows bigger than
10 MB before the end of the day, the file is renamed to output 2018-07-22.1.1o0g, an
index is added to the name, and a new output.log is created. The <maxHistory> sets the
lifespan of a log file, and in our case, it is 30 days.

343

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

Logging is a powerful tool; make sure not to abuse it because it can lead to
performance problems and a lot of data that is difficult to analyze for useful information.
Another thing worth noticing is in the previous code. StringBuilder instances are
used to construct big log messages, which are printed at a certain level. What happens
if logging for that level is disabled via configuration? If you guessed that time and
memory are consumed by creating those messages, even if they are not logged, you are
right. So, what do we do? The creators of SLF4] have thought of this as well and added
methods to test if a certain logging level is enabled and those methods can be used in
an if statement that wrap around the performance sensitive code. This being said the
SortingS1f4jDemo.main(..) method becomes

public static void main(String... args) {
if (args.length == 0) {
log.error("No data to sort!");
return;

}
int[] arr = getInts(args);

if (log.isDebugEnabled()) {
final StringBuilder sb = new StringBuilder(

"Sorting an array with merge sort: ");
Arrays.stream(arr).forEach(i -> sb.append(i).append(" "));
log.debug(sb.toString());

}

IntSorter mergeSort = new MergeSort();
mergeSort.sort(arr, 0, arr.length - 1);

if (log.isInfoEnabled()) {
final StringBuilder sb2 = new StringBuilder("Sorted: ");
Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));
log.info(sb2.toString());

}

In this code sample, if the SLF4] configuration for the com.apress.bgn.ch9 package
is set to info, the message starting with Sorting an array with merge sort: ... is no longer
created nor printed, because the log.isDebugEnabled() returns false, so the code

344

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

enclosed in the if statement is no longer executed. The Logger class contains
if..Enabled() for any logger level.

And this is all that can be said in this section about logging. Remember to use it
moderately, pay very much attention when you decide to log messages in loops and for
big application always use a logging facade, meaning SLF4].

Debug Using Assertions

Another tool to debug your code is using assertions. If you remember the section about
Java keywords, you probably remember the assert keyword. The assert keyword writes
an assertion statement that is a test of your assumptions on the program execution.

In the previous examples, we had the user provide the input for our sorting program,

so for our program to do the right thing, it is assumed that the user provide the proper
input, this means, an array with size bigger than 1, because there is no point to run the
algorithm for a single number. So, how does this assertion looks like in the code? The
answer to this question is in the following code sample.

package com.apress.bgn.ch9;

import com.apress.bgn.ch9.algs.IntSorter;
import com.apress.bgn.ch9.algs.QuickSort;

import java.util.Arrays;
import static com.apress.bgn.ch9.SortingS1f4jDemo.getInts;

public class AssertionDemo {
public static void main(String... args) {
int[] arr = getInts(args);

assert arr.length > 1;

IntSorter mergeSort = new QuickSort();
mergeSort.sort(arr, 0, arr.length - 1);

final StringBuilder sb2 = new StringBuilder("Sorted: ");
Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));
System.out.println(sb2.toString());

345

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

If you run this code without providing any arguments to the program, nothing
happens, even if we have an assertion statement in it. The reason for this is that
assertions need to be enabled using a VM argument: -ea. To specify this argument, you
can add it to the command when executing from the command line; but since we've
used the editor until now, you can add it in the VM options text box of the Intelli] IDEA
launcher, as depicted in Figure 9-5.

L] L] Run/Debug Configurations
+ -~ B H F a | 1 MName: AssertionDemo Share Single instance only
v = Application
Sor emo Configurati Code C Iel Logs
Main class: com.apress.bgn.ch9. AssertionDemo
» F Templates VM options:
Program arguments:
Working directory: n fiuli ina/apress/work fi bgn n
Environment variables:
Use classpath of module: % logging-sifdj_main B
Include dependencies with "Provided” scope
JRE: Default (10 - SDK of ‘lo 4j_main' module) B
Shorten command line: user-local default: none - java [optlons] classname [args] ﬁ
Enable capturing form snapshots
* Before launch: Build, Activate tool window
“\ Build
+
Show this page 8 Activate tool window
. Close Apply m

Figure 9-5. Intelli] IDEA launcher for the AssertionDemo class with the -ea VM
argument set

When assertions are enabled, running the previous code ends with an java.lang.
AssertionError being thrown, because the expression of the assertions is evaluated
to false because the arr.length is clearly not bigger than 1 when no argument is
provided. Assertions have two forms. In the simple form, they only have the expression
to evaluate; the assumption to test

assertion expression;

346

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

In this case, java.lang.AssertionError is being thrown. It prints the line of the
assumption being made, which is clearly the wrong assumption for the current run of
the program, with the module and the full classname.

Exception in thread "main" java.lang.AssertionError
at chapter.nine.slf4j/com.apress.bgn.ch9.AssertionDemo.main
(AssertionDemo.java:48)

The complex version of the assertion adds another expression to be evaluated, or a
value in the stack to tell the user that the assumption was wrong.

assertion expressionl : expression 2;
So, if we replace
assert arr.length > 1;
with
assert arr.length > 1 : "Not enough data to sort!";

when java.lang.AssertionError is thrown, it depicts the Not enough data to sort!
message, which makes it clear why the assertion statement is preventing the rest of the
code from being executed.

Exception in thread "main" java.lang.AssertionError: Not enough data to sort!
at chapter.nine.slf4j/com.apress.bgn.ch9.AssertionDemo.main
(AssertionDemo.java:48)

Or we could just print the size of the array.
assert arr.length > 1 : arr.length;
Or both.

assert arr.length > 1 :

"Not enough data to sort! Number of values: " + arr.length;

Assertions can be used before and after the piece of code that needs to be debugged.
In the this case, the assertion was used as a precondition of the execution, because the
failure of the assertion prevents code from being executed. But assertions can be used as
post-conditions also to test the outcome of executing a piece of code.

347

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

In the previous code snippet, the assertion was used to test the correctness of the
user provided input. In situations like this, the restriction of a valid input should be
obeyed, whether assertions are enabled or not. Sure, if our array is empty or contains
a single element, this is not a problem, as the algorithm is not executed, and this does
not lead to a technical failure. There are a few rules to obey, or things to look for when
writing code using assertions.

o Assertions should not be used to check the correctness
of arguments provided to public methods. Correctness of
arguments should be something tested in the code and a proper
RuntimeException should be thrown and should not be avoidable.

o Assertions should not be used to do work that is required for
your application to run properly. The main reason for this is that
assertions are disabled by default and having them disabled leads
to that code not being executed, so the rest of the application does
not function properly because of the missing code.

o For performance reasons, do not use expressions that are
expensive to evaluate in assertions. This rule requires no
explanation, even if assertions are disabled by default, imagine that
somebody enables them by mistake on a production application.
That would be unfortunate, wouldn’t it?

Ifyou are interested in using assertions, keep in mind those three rules, and you
should be fine.

Step-by-Step Debugging

If you do not want to write log messages, or use assertions, but you still want to inspect
values of variables during the execution of a program. There is a way to do that using
an IDE: pausing the execution using breakpoints and using the IDE to inspect variable
contents or execute simple methods to check if your program is performing as expected.
A breakpoint is a mark set on an executable line of code (not a comment line, not an
empty line and not a declaration). In Intelli] IDEA, to set a breakpoint, you have to click
the gutter area on the line you are interested in. Or select the line and from the Run menu
select Toggle Line Breakpoint. When a breakpoint is in place, a red bubble appears on the
line in the gutter section. Figure 9-6 shows a few breakpoints in Intelli] IDEA.

348

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

311 @ public static void main(String... args) {

32 if (args.length == @) {

33 log.error("No data to sort!");

34 return;

36 int[] arr = getInts(args);

38 if (log.isDebugEnabled()) {

39 final StringBuilder sb = new StringBuilder("Sorting an array with merge sort: ");
40 & Arrays.stream{arr).forEach(i — sb.append(i).append(" "});
41 log.debug(sb.toString());

H

a4

45 @ IntSorter mergeSort = new MergeSort();

46 mergeSort.sort(arr, low: @, high: arr.length - 1);

48 @ if (log.isInfoEnabled()) {

49 final StringBuilder sb2 = new StringBuilder(“Sorted: ");
{50 & Arrays.stream(arr).forEach(i —> sb2.append(i).append(" “));
51 log.info(sb2.toString());

52 }

53 }

54

55 Sk

56 * Transforms a String[] to an int[] array

af *

58 * @param args

59 % @return an array of integers

6@ */

651 @ public static int[] getInts(String[] args) {

62 List<Integer> list = new ArraylList<=();

63 @ for (String arg : args) {

Figure 9-6. Intelli] IDEA breakpoints

Once the breakpoints are in place, when the application is executed in debug mode,
it pauses on each of the lines. You can decide if you want to continue the step-by-step
execution and inspect the values of the variables. Intelli] IDEA is very helpful with
this because it shows you the contents of every variable in each line of the code being
executed. In Figure 9-7, the SortingS1f4jDemo class is running in debug mode and is
paused during execution using breakpoints.

349

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

a0 ® java-ban |~/apress/wor flava-bgn] - .../chapter08/logging-slf 4j/src/main/java/com/apress/bgn/chB/SortingSif4jDemo.java [logging-:
2 Java-bgn : 1] chapter09 : © logging-sifaj | src) lig main) jw java) B com) D apress ; Dm bgn) Dn chd) @ SortingSifajDer , SortingSifajDema ~ P
& SortingSifa) java @ ionDoma jave 1.

i1 b @ public static void main(String... args) { args: ("5, "a", “3", "2v, v,
if [args.length = @) {

log.error({"No data to sort!"}); log: “Logc

return;

© | _ dntl] arr = getInts(args):

if (log.isDebugEnabled{)) {
final StringBuilder sb = new StringBuilder({"Sorting an array with merge sort: ");
Arrays.stream(arr), forEach{i -> sb.append(i).append(” "));
Log.debug(sb. toString()];

(- IntSorter mergeSort = new MergeSort();
mergeSort.sort{arr, low: @, high: arr.length - 1);

SortingSH4jDemo @ main()

g:| % SortingSifajDemo 3.
¢ ouoge Eeosde[= > £ + 1 L %] @ 4.
» [Elrana = = e | o e | R

% *main“@1 in gro... v S staticm SortingSif4jDemo + —- a @ oo

= nain:38, SortingSifajDemo (com.aprd b :!' log = !8?!9;- "Logger[com.apress.bgn.ch9.SortingSif4jDemo]" [log.isDebugEnabledt() = false
e o
@ 2. > E0="5"
P E1="g"
b » H2=13"
& » E3="2"
> =4="b"
- P =E5=""
0 =6="ds"
- E7="4"

Figure 9-7. Intelli] IDEA SortingSlf4jDemo class paused during execution

To run an application in debug mode, instead of starting the launcher normally, you
can start it by clicking the green bug-shaped button (marked 1 in Figure 9-7) that is right
next to the green triangle-shaped button that is normally used to run the application.
The application runs and stops at the first line marked with a breakpoint. From that
point on the developer can do the following things.

o Inspectvalues of the variables used on the line with the breakpoint
by reading the values depicted by the editor there.

o Continue the execution until the next breakpoint by clicking the
green triangle in the Debug section, marked 2 in Figure 9-7.

o Stop the execution by clicking the red square-shaped button in the
Debug section, marked 2 in Figure 9-7.

o Disable all breakpoints by clicking red bubble cut diagonally shaped
button in the Debug section, marked 2 in Figure 9-7.

o Continue execution to the next line of code by clicking the button with
a 90-degree angle in the Debugger section, marked 3 in Figure 9-7.

350

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

o Continue execution by entering the method in the current line of
code by clicking the button with a blue arrow oriented down, in the
Debugger section, marked 3 in Figure 9-7.

o Continue execution by stepping out of the current method by clicking
the button with a blue arrow oriented up, in the Debugger section,
marked 3 in Figure 9-7.

o Continue the execution to the line pointed at by the cursor by clicking
the button with a diagonal arrow pointing to a cursor sign in the
Debugger section, marked 3 in Figure 9-7.

o Evaluate your own expressions by adding them to the Watches
section marked 4 in Figure 9-7. The only condition is that the
expressions only use variables that are accessible in the context of the
breakpoint line.

Most Java smart editors provide the means to run a Java application in debug mode;
just make sure that you don’t forget to clean up your Watches section from time to time,
because if you add expressions that are expensive to evaluate there, it might affect the
performance of the application. Also, be aware that expressions that use streams might
make the application fail, as proven in Chapter 8.

Inspect Running Application Using Java Tools

Aside from the executables to compile Java code and execute or packaging of Java
bytecode, the JDK provides a set of utility executables that can be used to debug and
inspect the state of a running Java application. This section covers the most useful of
them. without further ado, let’s cover the most important ones.

IPS

A Java application is assigned a process ID when it is running. This is how an operating
system keeps track of all applications running in parallel at the same. You can see the
process IDs in utilities, such as Process Explorer in Windows and Activity Monitor in
macOS. But if you are comfortable with working in the console, you might prefer using

the jps executable provided by the JDK because it only focuses on Java processes.
When calling jps from the console, all Java process IDs are listed with the main class

351

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

name or some details that are exposed by the application API that help you identify the
application running. This is useful when an application crashes, but the process remains
in a hanging state. This can be painful when the application uses resources such as files
or network ports, because it might block them and prevent you from using them. When
executing jps on my computer (I have a Mac) these are the Java processes I see running.
% Jps

21234 Launcher

18562

21235 SortingS1f4jDemo

3155 muCommander

21236 Jps

Asyou can see in the listing, jps does include itself in the output, because it is a Java
process. The process with 21235 is the execution of the SortingS1f4jDemo class. The
21234 process is a launcher application that Intelli] IDEA uses to start the execution
of the SortingS1f4jDemo class. The process with ID 3155 is a Java application that is
an alternative to Total Commander (a Windows file manager application). The 18562
process does not have any description, but at this point I can identify the process myself,
because I know I have Intelli] IDEA opened, which is itself a Java application.

The advantage of knowing the process IDs is that you can kill them when they
hang and block resources. Let’s assume that the process started by the execution of
SortingS1f4jDemo ended up hanging. To kill a process, all operating systems provide
aversion of the kill command. For macOS and Linux, you should execute kill -9
[process_id]. For the preceding example, if I call kill -9 21235 and then call jps, I
can see that that SortingS1f4jDemo process is no longer listed.

% Jps

21234 Launcher
18562

3155 muCommander
21257 Jps

I do still have the Launcher process, but that is a child process of Intelli] IDEA so
there is no point in killing it, because next time I run amain(..) in the IDE, the process is
started again.

jps is a simple tool for this specific purpose, but sometimes when applications are
installed on servers with minimal setup, it might be all you have. So, it’s good to know it exists.

352

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING
jemd

The jcmd is another JDK utility that can be useful. It sends diagnostic command requests
to the JVM, which can help troubleshoot and diagnose JVM and running Java applications.
It must be used on the same machine where the JVM is running and the result of calling

it without any commands is that it shows all Java processes currently running on the
machine; it displays the process Ids and the command used to start their execution.

$ jcmd

3155 com.mucommander .muCommander

21369 jdk.jcmd/sun.tools.jcmd.JCmd

21355 org.jetbrains.jps.cmdline.Llauncher /Applications/IntelliJ IDEA 2018.2 EAP
.app/Contents/lib/platform-api.jar:/Applications/Intelli] IDEA 2018.2 EAP
.app/Contents/lib/jps-builders-6.jar:/Applications/Intelli] IDEA 2018.2 EAP

.app/Contents/lib/netty-transport-4.1.25.Final.jar:/Applications/Intelli] IDEA
21356 chapter.nine.slf4j/com.apress.bgn.ch9.SortingS1f4jDemo 5 a 3 2 b 1 ds 4
21326 org.jetbrains.idea.maven.server.RemoteMavenServer

The simplest command that you can run jcmd with is help on a running process, which
depicts all additional commands you can use on that process. This works if the application
is currently running and not paused using a breakpoint. Since the SortingS1f4jDemo was
paused when I was writing this, I used the muCommander process as an example.

If I call jemd 3155 help this is what I see:

$ jemd 3155 help

3155:

The following commands are available:
JFR.configure

JFR.stop

JFR.start

JFR.dump

JFR.check

VM. log

VM.native memory

VM.check commercial features
VM.unlock commercial features
ManagementAgent.status

353

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

ManagementAgent.stop
ManagementAgent.start local
ManagementAgent.start
Compiler.directives_clear
Compiler.directives remove
Compiler.directives add
Compiler.directives print
VM.print_ touched methods
Compiler.codecache
Compiler.codelist
Compiler.queue
VM.classloader stats
Thread.print
JVMTI.data_dump
JUMTI.agent load
VM.stringtable

VM. symboltable
VM.class_hierarchy
VM.systemdictionary
GC.class_stats
GC.class_histogram
GC.heap_dump
GC.finalizer info
GC.heap_info
GC.run_finalization

GC.run

VM.info

VM.uptime

VM.dynlibs

VM.set flag

VM. flags

VM.system properties
VM.command_line
VM.version

help

354

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

It is not the objective of this book to cover them all, as these are advanced features of
Java, but probably you have a basic idea of the scope of each command. As example, the
following shows the output of calling jemd 3155 GC.heap_info.

$ jcemd 3155 GC.heap_info
3155:
garbage-first heap total 48128K, used 11698K [0x00000006c0000000,
0x00000007c0000000)
region size 1024K, 1 young (1024K), 0 survivors (OK)
Metaspace used 35414K, capacity 35923K, committed 36864K, reserved 1081344K
class space used 4588K, capacity 4835K, committed 5120K, reserved 1048576K

If you remember, in Chapter 5 the different types of memory used by the JVM were
discussed, and heap was the memory where all the objects used by an application were
stored. This command prints the heap details: the amount that was used and reserved,
the size of a region, and so forth. These details are covered more in detail in Chapter 13.

jconsole

jconsole is JDK utility that can be used to inspect various JVM statistics. To use it, you
have to start it from the command line and connect it to a Java application that is already
running. This application is quite useful, as it can connect to applications running on
different machines also, as long as they are running in debug mode on a server and
expose a port to connect to. To start a Java application in debug mode and expose a

port for an external application, you have to start the application with the following VM
parameters.

-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=1044

The port can be any port really as long as it is bigger than 1024, because those are
restricted by the operating system. The transport=dt_socket instructs the JVM that the
debugger connections is made through a socket, the address=1044 parameter informs
it that the port number is 1044. The suspend=y instructs the JVM to suspend execution
until a debugger is connected to it. To avoid that suspend=n should be used.

For our simple example and considering we use jconsole to debug a Java application
on the same machine, we do not need all that. We need to start jconsole from the
command line and look in the Local Processes: section and identify the Java process we
are interested in debugging. Figure 9-8 shows the first JConsole dialog window.

355

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

[NON Java Monitoring & Management Console
Connection Window Help
@ JConsole: New Connection

New Connection

© Local Process:

Name PID
com.mucommander.muCommander 688
jdk.jconsole/sun.tools.jconsole.JConsole 1937
org.jetbrains.jps.cmdline.Launcher [Applications/I... 1891
chapter.nine.slf4j/com.apress.bgn.ch9.SortingSIf4...

1578
org.jetbrains.idea.maven.server.RemoteMavenSer... 1613

Note: The management agent will be enabled on this process.
Remote Process:

Usage: <hostname>:<port> OR service:jmx:<protocol>:<sap>

Username: Password:

Connect Cancel
Figure 9-8. JConsole first dialog window

When the process is running locally it can be easily identified because it is named
using the module and the fully qualified main class name. When we use jconsole to
debug locally, the application does not have to run in debug mode, but for an application
as simple as ours we need to make a few tweaks to make sure that we can see a few
statistics with jconsole, during the run of the application. A few Thread.sleep(..)
statements were added to pause the execution enough for jconsole to connect. Also,
we'll use a large array of data to make sure that the statistics are relevant.

public class SortingS1f4jDemo {

private static final Logger log =
LoggerFactory.getLogger (SortingS1f4jDemo.class);

public static void main(String... args) throws Exception {
Thread.sleep(3000);

356

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

Random random = new Random(5);
IntStream intStream = random.ints(100 000 000,0,350);

int[] arr = intStream.toArray();

if (log.isDebugEnabled()) {
final StringBuilder sb =
new StringBuilder("Sorting an array with merge sort: ");
Arrays.stream(arr).forEach(i -> sb.append(i).append(" "));
log.debug(sb.toString());

}

Thread.sleep(3000);

IntSorter mergeSort = new MergeSort();
mergeSort.sort(arr, 0, arr.length - 1);

if (log.isInfoEnabled()) {
final StringBuilder sb2 = new StringBuilder("Sorted: ");
Arrays.stream(arr).forEach(i -> sb2.append(i).append(" "));
log.info(sb2.toString());

After doing the modifications, we'll start the application normally and connect
jconsole to it. After a successful connection, a window like the one shown in Figure 9-9
is opens, and graphs of the JVM memory consumption, number of threads, of classes
loaded and CPU usage are displayed.

357

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

[] & Java Menitering & Management Console
Connection Window Help
® e pid: 2245 chapter.nine.sif4j/com.apress.bgn.ch9.SortingSIf4jDemo (disconnected)
m Memory Threads Classes VM Summary MBeans e
Time Range: All
“Heap Memory Usage — “Threads -
2.0Gb 20
1.5Gb 15
1.0GCb 10
0.5 Gb 5
Used Live threads
0.0 Gb «0 0 40
19:18 19:19 19:20 19:18 19:19 19:20
Used: 2.0 Gb Committed: 3.3 Gb Max: 4.3 Gb Live: 14 Peak: 18 Total: 18
~Classes -CPU Usage
4,000 30%
25%
3,000
20%
2,000 15%
10%
1,000
5%
Loaded CPU Usage.
0 <« 0 0% 4 0.0%
19:18 19:19 19:20 19:18 19:19 19:20
Loaded: 3,110 Unloaded: 0 Total: 3,110 L CPU Usage: 8.8%

Figure 9-9. JConsole statistics window

There is a tab for each of these statistics that provides more information, and in

a more complex application, this information can be used to improve performance,

identify potential problems, or even estimate application behavior for desired cases. For

our small application, the jconsole graphs do not reveal much, but if you really want to

see valuable statistics, install an application like mucommander® use it for a while without

closing it and then connect jconsole to it and have fun.

*The official MuCommander site is at http://www.mucommander . com

358

http://www.mucommander.com/

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING
jme
JMC is short for Oracle Java Mission Control. The jmc command starts an advanced
Oracle application for debugging and analyzing JVM statistics for a running application.
From its official description: JMC is a tool suite for managing, monitoring, profiling, and
troubleshooting your Java applications that became part of the JDK utility tools family
starting with version 7.

Similar to other tools, this utility identifies the Java processes currently running
and provides the possibility to check out how much memory they require at specific
times during execution, how many threads are running in parallel at a given moment
in time, the classes loaded by the JVM, and how much processing power is required to
run a Java application. The JMC has a friendlier interface and one of its most important
components is the Java Flight Recorder that can be used to record all JVM activity while
the application is running, all that data collected during this time being is then used to
diagnose and profile the application.

To inspect the application while it is running, we open the JMC by running jmc from
the command line, and then select the process that we recognize as the one running the
SortingS1f4jDemo main class based on the same rule as before. We look for a process
name containing the module name and the fully classified class name when we found it.
We right-click it and select Start JMX console. You should see something similar to the
image depicted in Figure 9-10.

359

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

LR Oracle Java Mission Control

T B 5 e EH8 =0 [0 cheterninesta] ban.chi. (25241 1 =

* 5 [1.8.0.152-release] -Xms128m (1578) pul =

v‘[:[n.&o_"ﬂnﬂ- } arg petraing, idea, miven. ;' Overview g

e bn.cha (2624)
% MBean Server

* JimMX Data Persistence Settings i
 aa Fiight Reconder ~ Dashboard L

4 [10.0.1] com.mucommandes muCommander (688}

* *2 [10.0.1] ceg jetbrains.jps cmdiine Launcher (Appications/intelild IDEA 201, Used Java Heap Memory JVM CPU Usage Live Set + Fragmentation

¥ 34 [9.0.4] The JUM Running Mission Control

L}
i
|
HNo walue yot
o
0o B [0 .M CPU Usage
& Il Mechine CPU Usage
0% .
0%
W43 204Z00 204207 204108 204221 204228 042IS 204242
= Memory L
[committed Java Heap
L] e e |)l Maium Java Hesg
512 Wi [Total Physical Memory
ok 5 [l used Javs Heap Memoey
2004153 204200 204207 204714 a2l 204228 2004235 Az a2 .Uﬁeﬂ Physical Memary
T Overview | T MBean Browser| § Triggers asmm%mm »® Threacs | Disgnastic Commands
= suack Trace Rdhk = Qb =20
Stack Trace Count
T bytell java utiamrays.copyOf (byte[), int} 84818
T void java.a BAE1R
~ET + i javalang. Bl i 77476
e . o=
[T] Propartios 23 w8 Resuits B L o T T iy 77476
Praperty Value 1, void com spruss.bgn.end.algs MergeSert scetfint(], int, int) Ad3am,
1 void com.apress.bgr.chd.algs MergaSort sectfintl], int, Inth 44339
}, vakd com.apress.bgn.chd.algs. MergeSort.sortfint[], int, int) 44393
*h void com.apruss.ban.chd.algs. MargeSort.sorifint(], int, inth 44379
, void com.apress.bgn.che.algs. MergeSort soraintl], int, inth 44350
. vold com_apress,bgn.chd algs MergeSort, sori{int[], int, int) 44308
*h void com.apruss.ban.cnd.algs- MargeSort sceifint(]. int, inth Az 2e,
, void com.apress.bgn.chd.algs MergeSart sortint[], int, inth 44068
. void com_apress.bgn.ch.algs. MergeSert.sort(int], int, int) 43808
, void com.spress.ban.chd.algs. MergeSort.sorafintl], int, inth 43351
. void com_apress.bgn.chd.aigs. MergeSort.sortfintl], int, inth 42628
. void com.apress.bgn.chs.algs MergaSort sorafint[], int, inth 41410
. void com.spress.ban.chd.algs. MergeSort.sorfintl], int, inth 38798
. vold com.apress.bgn.chd.algs MergeSort.sort{int[] int, inth anzz
. void com.apress. bgn.chl, algs MargeSort. sori{int[], int, int) 34372
 void com.spress.ban.chd.algs MergeSort sorfint[], int, inth 31931
T vold com_apress.bgn.chd.algs MergeSort.sort{int[], int, inth 5987
. void com.apress.bgn.chi.aigs MergaSort sortfint[), int, inth 28878
iy s e e . —

Figure 9-10. JMX console

As you probably noticed, the interface is definitely friendlier and the provided
statistics are more detailed. Using JMC, everything that happens with the application
and JVM during a run can be recorded and analyzed later, even if the application has
stopped running since. The Memory tab provides a lot of information regarding the
memory used by the application, including what types of objects are occupying it. The
information for the memory occupied by SortingS1f4jDemo during its run is depicted in
Figure 9-11.

360

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

as flight_recording_1001chapterninesif4j P bgnch9SortingSif4jDemo2499_2018-07-29_20-39-02_ad385915.jfr 2 i |
“4 Memory (1]
<Mo Selection>) Aspect: <No Selectiol[) Show concurrent: Contalned 4 Same threads Time Range: Set Clear
Class Max Live Count Max Live Size v Live Size incr

G jdk.jfr.internal.RequestEngine$RequestHook$1
java.lang.StringBuilder

© java.io.SerialCallbackContext

@ java.lang.Object[]

G java.util. ArrayList

@ java.io.ObjectstreamClass

G jdk.jfr.internal.SecuritySupport$$Lambda$224.314037744
sun.rmi.transport.StreamRemoteCall
sun.nio.fs.UnixFileAttributes

@ imp

[C] java.util.ArrayList

@ java.util.Hashset
java.lang.String
Java.io.DataOutputStream

© java.lang.Classl]

g java.lang.Long

| " @ [E carbage Collection
5 GiBT @ [H Total Allocation
4GBt @ [used Heap
. Heap Space : Committed Size
2 Gie
> i Bl Hesp Space : Reserved Size
! [Used size

1 GiB i

Allocation B Total Size

~ o Live Size
1.25 GiB
1GiB

768 MiB T

512 MiB T

256 MiB T
Memory Usage i i ' ¢
29/07f2018 20; 3l8: 15 20:3.8: 30 20:3l8:45 20:3l9:(.

Figure 9-11. JMX console » the Memory tab

To record this information during the application run, or for a limited period of
time, in the JVM Browser expand the process node and select Start Flight Recording.
A window is opened asking you to select a path where the recording is saved and the
duration of the recording. The file has a . jfr extension and can be opened with the
JMC for inspection. The flight recorder menu and the dialog to start recording data are
depicted in Figure 9-12.

361

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

ene

Bl oM Browsee | 7 Outhine ERE=.N
» % [1.8.0_152-roleaso] -Xms128m (1578)

Y080,] org jetbeains. kienmaven, [
¥ ¥ [10.0.7] chapter.nine.sif4}fcom apress bgn.ch Sarting§if4[Dema (2524)

> V5 [10.0.1] ool Start Flight Recording...
»PE010.01) 0 % Dump Recording Data.. imiansintellis I0EA 201,
» ¥4 19.0.4] Tne Jvm Running Mession Control

Start Flight Recording

Start Flight Recording ‘Sjv 1
Ecit recording settings and then click Finish 1o start the fight recording. D*>’
Destination File: fusersfiui ight_recarding_100 ing! jfr Browse..,
Ham:. My Recorging

© Time fixed recording
Recording tme: 4 min
Contimmiss reeording
Maximium size:

Maximum sge:

Evart SOttings: seriings for My Reconding - st started B Temeiste managee

Descrintion:
Thesi sttings wene used 10 2180t the reconding ' i i 1_recording_ i j i j L

Mote: Time fixed recordings will be automatically dumped and spened.

@ Nees | conce (TN

Figure 9-12. JMC Flight Recording menu and dialog window

The JMC subject is too advanced and broad for this section, an entire book
could probably be written about its usage and how to interpret the statistics. So,
I'll stop here and recommend this Oracle article if you want to dig deeper: www.
oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-
control-1998576.html.

Accessing the Java Process API

Java 9 came with a lot of other improvements aside the Jigsaw modules, one of them
being a new and improved Process API. The Java Process API allows you to start, retrieve
information, and manage native operating system processes. The ability to manipulate
processes was in former versions of Java, but it was rudimentary. Note how a process was
created before Java 5.

package com.apress.bgn.ch9;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

362

http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-1998576.html
http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-1998576.html
http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-1998576.html

import java.
import java.
import java.
import java.
import java.
import java.

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

io.BufferedReader;
io.InputStream;
io.InputStreamReader;
io.Reader;
nio.charset.Charset;
nio.charset.StandardCharsets;

public class ProcessCreationDemo {

private

static final Logger log =

LoggerFactory.getLogger (ProcessCreationDemo.class);

public static void main(String... args) {

try

{

Process exec = Runtime.getRuntime()

.exec(new String[] { "/bin/sh", "-c", "echo Java
home: $JAVA HOME" });
exec.waitFor();
InputStream is = exec.getInputStream();
StringBuilder textBuilder = new StringBuilder();
try (Reader reader = new BufferedReader(new InputStreamReader
(is, Charset.forName(StandardCharsets.UTF 8.name())))) {
int ¢ = 0;
while ((c = reader.read()) != -1) {
textBuilder.append((char) c);

}
log.info("Process output -> {}", textBuilder.toString());

log.info("process result: {}", exec.exitValue());
} catch (Exception e) {
e.printStackTrace();

Intercepting the output of a process that has started is a pain. We need to wrap a

BufferedReader instance around the InputStream instance connected to the normal

output of the process.

363

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

The process API made things a little more practical. It has at its core a few classes
and interfaces, all with names that start with the "Process" term. What we’ve done so
far with Java executables, can be directly done by writing Java code. The interface that
provides an API to access native processes is named ProcessHandle and is part of the
core Java package java.lang. In a similar manner to the Thread class, there is a static
method named current to call on this interface to retrieve the ProcessHandle instance
of the current running process. Once we have this, we can use its methods to access
more process information. The ProcessHandle provides several static utility methods
to access native processes. Java code can be written to list all processes running on a
computer and they can be sorted based on certain criteria. The following piece of code
lists all the processes that were created by running the java command.

package com.apress.bgn.ch9;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.Arrays;
import java.util.Optional;
public class ProcessListingDemo {

private static final Logger log = LoggerFactory.getlLogger(ProcessDemo.class);

public static void main(String... args) {
Optional<String> currUser = ProcessHandle.current().info().user();

ProcessHandle.allProcesses()
.filter(ph -> ph.info().user().equals(currUser)
8& ph.info().commandLine().get().contains("java"))
.forEach(p -> log.info("PID: " + p.pid());
p.info() .arguments()
.ifPresent(s -> Arrays.stream(s)
.forkach(a -> log.info("\t {}", a)));

p.info().command()
.ifPresent(c -> log.info("\t Command: {}", c));

1

364

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

This code extracts the user from the current running process by obtaining its
handle and calling info() to obtain an instance of ProcessHandle. Info, an interface
that provides a set of methods to access snapshot information about the process as
the command and arguments that were used to create the process. The output of the
previous code is printed in the console. It should look similar to the following listing.

INFO c.a.b.c.ProcessDemo - PID: 3077

INFO c.a.b.c.ProcessDemo - -Dlogback.configurationFile=
chapter09/processapi/src/main/resources/logback.xml
INFO c.a.b.c.ProcessDemo - -javaagent:/Applications/Intelli] IDEA
2018.2 EAP

.app/Contents/lib/idea_rt.jar=57554:
/Applications/Intelli] IDEA 2018.2 EAP.app/Contents/bin

INFO c.a.b.c.ProcessDemo - -Dfile.encoding=UTF-8

INFO c.a.b.c.ProcessDemo - -p

INFO c.a.b.c.ProcessDemo - /Users/iulianacosmina/apress/workspace/
java-bgn/chapter09/processapi/out/production/classes ...*.jar

INFO c.a.b.c.ProcessDemo - -m

INFO c.a.b.c.ProcessDemo - chapter.nine.processapi/com.apress.bgn.ch9.

ProcessDemo
INFO c.a.b.c.ProcessDemo - Command:

/Library/Java/JavaVirtualMachines/jdk-10.0.1.jdk/Contents/Home/bin/java

INFO c.a.b.c.ProcessDemo - PID: 3076

INFO c.a.b.c.ProcessDemo - -Xmx700m

INFO c.a.b.c.ProcessDemo - -Djava.awt.headless=true

INFO c.a.b.c.ProcessDemo - -Djdt.compiler.useSingleThread=true

INFO c.a.b.c.ProcessDemo - org.jetbrains.jps.cmdline.Launcher

INFO c.a.b.c.ProcessDemo - /Applications/Intelli] IDEA 2018.2 EAP.app/
Contents/lib/...*.jar

INFO c.a.b.c.ProcessDemo - org.jetbrains.jps.cmdline.BuildMain

INFO c.a.b.c.ProcessDemo - 127.0.0.1

INFO c.a.b.c.ProcessDemo - 51833

INFO c.a.b.c.ProcessDemo - 47353a1a-570c-4145-8519-91abcbb66e9a

INFO c.a.b.c.ProcessDemo -
/Users/iulianacosmina/Library/Caches/IntelliJIdea2018.2/compile-server

365

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

INFO c.a.b.c.ProcessDemo - Command:
/Library/Java/JavaVirtualMachines/jdk-10.0.1.jdk/Contents/Home/bin/java

In this log, only the Intelli] IDEA launcher used to run the ProcessDemo class and
the process spawned to run it were depicted, but the output could be much bigger. Also,
some arguments were shortened, as it is useless to waste pages of the book with logs.
Nevertheless, some depiction of the log format was necessary in case you never run the
code yourself.

The previous code sample showed you roughly how to access native processes and
print information about them. But, using the improved Java process API, new processes
can be created, and commands of the underlying operation system can be started. For
example, we can create a process that prints the value of the JAVA_HOME environment
variable, and capture the output to display it in the Intelli] console.

package com.apress.bgn.ch9;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class ProcessCreationDemo {
private static final Logger log =
LoggerFactory.getLogger(ProcessCreationDemo.class);

public static void main(String... args) {

try {

ProcessBuilder pb = new
ProcessBuilder("/bin/sh", "-c", "echo Java home: $JAVA HOME")
.inheritIO();

Process p = pb.start();
p.onExit();
CompletableFuture<Process> future = p.onExit();
int result = future.get().exitValue();
log.info("Process result: {}", result);

} catch (Exception e) {
e.printStackTrace();

366

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

New processes can be created by using instances of ProcessBuilder that can receive
as arguments a list of commands and values to use as arguments for them. The class has
many constructors and methods with different signatures that can be used to create and
start processes easily. The inheritI0() method sets the source and destination for the
subprocess standard I/0 to be the same as the current process. The onExit() method
returns an CompletableFuture<Process> that can be used to access the process at the
end of its execution to retrieve the exit value of the process. For a process terminating
normally, the value should be 0(zero).

When a Java program creates a process, it becomes a child of the process that created
it. To list all child processes, we need to make sure that they last a while, because once
terminated, they obviously no longer exist. The following code sample creates three
identical processes, each of them executing three Linux shell commands: the first is
echo "start" to notify that the process has started execution, the second is sleep 3
that pauses the process for 3 seconds, and the last one (echo "done.") is executed right
before the process finishes its execution. Once the process has started, it can no longer
be controlled, so to make sure that the child processes finish their execution, we’ll ask
the user to press a key to decide when the current process finishes execution by calling
System.in.read();.

package com.apress.bgn.ch9;

import org.slf4j.Llogger;
import org.slf4j.lLoggerFactory;

public class ProcessCreationDemo {
private static final Logger log =
LoggerFactory.getLogger(ProcessCreationDemo.class);

public static void main(String... args) {

try {
List<ProcessBuilder> builders = List.of(

new ProcessBuilder("/bin/sh", "-c",
"echo \"start...\" ; sleep 3; echo \"done.\"").
inheritIO(),

new ProcessBuilder("/bin/sh", "-c",
"echo \"start...\" ; sleep 3; echo \"done.\"").

inheritIO(),

367

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

new ProcessBuilder("/bin/sh", "-c",
"echo \"start...\" ; sleep 3; echo \"done.\"").

inheritIO()
);
builders.parallelStream().forEach(pbs -> {
try {
pbs.start();
} catch (Exception e) {
log.error("Oops, could not start process!”, e);
}
D;

ProcessHandle ph = ProcessHandle.current();
ph.children().forEach(pc -> {
log.info("Child PID: {}", pc.pid());

pc.parent().ifPresent(parent ->
log.info(" Parent PID: {}", parent.pid()));

};

System.out.println("Press any key to exit!");
System.in.read();

} catch (Exception e) {
e.printStackTrace();

We have grouped the ProcessBuilders in a list and processed the instances using
a parallel stream to make sure that all processes were started almost at the same time.
We printed the results of each of them after termination to make sure all were executed
correctly.

The children() method returns a stream containing ProcessHandle instances
corresponding to the processes started by the current Java process.

The parent () method was called for each child ProcessHandle instance to obtain
the ProcessHandle corresponding to the process that created it.

368

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

When running the previous code, in the console you should see an output similar to
what is depicted in the next listing.

start...

start...

start...

22:29:04.593 [main] INFO com.apress.bgn.ch9.ProcessCreationDemo - Child
PID: 3966

22:29:04.594 [main] INFO com.apress.bgn.ch9.ProcessCreationDemo - Parent
PID: 3962

22:29:04.594 [main] INFO com.apress.bgn.ch9.ProcessCreationDemo - Child
PID: 3965

22:29:04.594 [main] INFO com.apress.bgn.ch9.ProcessCreationDemo
PID: 3962

22:29:04.594 [main] INFO com.apress.bgn.ch9.ProcessCreationDemo - Child
PID: 3964

22:29:04.594 [main] INFO com.apress.bgn.ch9.ProcessCreationDemo
PID: 3962

Press any key to exit!

Parent

Parent

done.
done.
done.

The improved Java Process API provides a lot more control over running and
spawned processes and in a practical manner. In the past, developers who needed to
work with processes on a more advanced level resorted to native code. A full list of the
Java process API improvements added in Java 9 can be found at https://docs.oracle.
com/javase/9/core/process-apil.htm#ISCOR-GUID-6FAB2491-FD4E-42B4-A883-
DCD181A1CE3E.

Testing

Debugging is a part of a software process called testing and involves identifying

and correcting code errors. But avoiding technical errors is not enough, testing an
application means much more than that. There is an organization providing very good
materials for training and certifications for software testers. The International Software

369

https://docs.oracle.com/javase/9/core/process-api1.htm#JSCOR-GUID-6FAB2491-FD4E-42B4-A883-DCD181A1CE3E
https://docs.oracle.com/javase/9/core/process-api1.htm#JSCOR-GUID-6FAB2491-FD4E-42B4-A883-DCD181A1CE3E
https://docs.oracle.com/javase/9/core/process-api1.htm#JSCOR-GUID-6FAB2491-FD4E-42B4-A883-DCD181A1CE3E

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

Testing Qualifications Board (ISTQB) is a software testing qualification certification
organization that operates internationally. It established a syllabus and a hierarchy of
qualifications and guidelines for software testing.® If you think you are more interested in
software testing then you should look into getting an ISTQB certification.

The ISTQB defines testing as “the process consisting of all lifecycle activities, both
static and dynamic, concerned with planning, preparation and evaluation of software
and related work products to determine that they satisfy specified requirements to
demonstrate that they are fit for purpose and to detect defects.”

This is a technical and academic definition. The definition that I propose is “the
process of verifying that an implementation does what it is supposed to in the amount of
time it is expected to, with an acceptable resources consumption and it does not break
anything while doing so.”

A Small Introduction to Testing

Twant to be a developer. Why do I need to know all of these details about testing? The
simple answer is because testing is a constant activity that is performed during every
phase of the lifecycle of a software application. When the design is made, simulations
are done and experienced people review the design to decide if it represents a proper
solution for the problem and if it is realizable. When the code is written, it has to be
tested to make sure the application does not crash and behaves as expected. Before
delivery, there is a phase named acceptance testing when client representatives test
the application in a controlled environment so every action is logged and problems
identified. Testing can be done using debugging, using all the methods presented until
now, but the disadvantage of debugging is that it is manual and repetitive. So, let’s
introduce a way to test the application that is a little bit more automated.

I Testing is an essential part of the development process and should start as
early as possible, because the effort of fixing a defect grows exponentially with the
time it takes to be discovered.’

5The ISTQB certification path: https://www.istgb.org/certification-path-root.html
"Clean Code by Robert Martin (Prentice Hall, 2008)

370

https://www.istqb.org/certification-path-root.html

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

During the development phase, aside from writing the actual solution, you can also
write code to test your solution. Those tests can run manually or by a build tool when
you build your project. When writing your code, aside from thinking about the solution
to solve the problem, you should also think about how to test the solution. This approach
is called TDD, which is the acronym for test-driven development, a programming
paradigm that states that you should think about how to test your solution, before
implementing it, because if it is difficult to test, it probably is difficult to implement,
maintain on the long run and extend to solve related problems.

The simplest tests are called unit tests, which test small units of functionality. If unit
tests cannot be written easily, your design might be rotten. Unit tests are the first line of
defense against failures. If unit tests fail, the foundation of your solution is bad.

The tests that span across multiple components, testing the communication between
units of functionality and the results of their interactions against an expected results are
called integration tests.

The last type of tests a developer should write are regression tests, which are tests
that are run periodically to make sure that code that was previously tested still performs
correctly after it is changed. These type of tests are crucial for big projects where code
is written by a considerable number of developers, because sometimes dependencies
among components are not obvious, and code one developer wrote might break another
developer’s code.

This section only shows you how to write unit tests using a Java library called JUnit. It
describes a few typical testing components that a developer can build to set up a context
for the unit tests. Thus, as my Scottish colleagues say, let’s get cracking!

Test Code Location

As you probably remember, in Chapter 3 the java-for-absolute-beginners project
structure was explained. The discussion about tests must start with the structure of the
lowest level modules of the project, the ones that contain the source code and tests.
Figure 9-13 shows the structure of the module containing the sources and test code for
the module used in this section.

371

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

= testing
src
= main
java
resources
v test

> IEVE]
> [=resources
build.gradle

Figure 9-13. The Gradle module structure

The structure shown in Figure 9-13 can be explained as follows.

o The src directory contains all code and resources of the project. The
contents are split into two directories main and test.

— The main directory contains the source code and the application configura-
tion files, split into two directories. The java directory contains the Java
source code and the resources contains configuration files, non-executable
text files(that can be written according to various formats: XML, SQL, CSV;
etc.), media files, PDFs, and so forth. When the application is built and packed
into a jar (or war or ear) only the files in the java directory are taken onto
account, the *.class filed together with the configuration files are packed.

— The test directory contains code used to test the source code in the src direc-
tory. The Java files are kept under the java directory and in the resources
directory contains configuration files needed to build a test context. The con-
tents of the test directory are not part of the project that is delivered to a client.
They exist to help test the application during development.

Application to Test

For the examples in this section we build a simple application that uses an embedded
Derby?® database to store data. This is the production database. For the test environment
the database is replaced with various pseudo-constructions that mimic the database

8Ifyou are interested in finding our more about the Derby database, this is the official resource to
go to: https://db.apache.org/ derby/

372

https://db.apache.org/derby/
https://db.apache.org/derby/

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

behavior. The application is rudimentary. An AccountService implementation takes
data from the input and uses it to manage Account instances. The Account class is a very
abstract an unrealistic implementation of a banking account. It has a holder field, which
is the account owner, an accountNumber field, and an amount field. The AccountService
implementation uses an AccountRepo implementation to perform all related database
operations with Account instances using an implementation of DBConnection. The
classes and interfaces that are making up this simple application and relationships
between them are depicted in Figure 9-14.

c t i i
Account % & RuntimeException

£ 's AccountService I = AccountRepo 1 DbConnection % = AccountException % = DBException
i 1 : 1 :
)]
] ey
I L
1
____________ |
1 |
L
< AccountServiceimpl < AccountRepoimpl < DerbyDBConnection

Figure 9-14. Simple Account management application components

The implementation of these classes is not relevant for this section, but if you are
curious, you can find the full code on this book’s official repository. So, let’s start testing.
The easiest way would be to write a main class and perform some account operations.
But, we do not want that, once the application is in production we can no longer test new
features on it, because there are risks of data corruption. Also, production databases are
usually hosted on costly products, such as Oracle RDBMS (Oracle Relational Database
Management System) or Microsoft SQL Server. They are not really appropriate for
development, or testing. Also, the intention is to run tests automatically, so in-memory
or implementations that can be instantiated are more suitable. So, let’s start by testing
our AccountRepoImpl.

373

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

Introducing JUnit

JUnit is undoubtedly the most used testing framework in the Java development world.
At the end 0f 2017, JUnit 5° was released that is the next generation of this framework.
It comes with a new engine, is compatible with Java 9+, and comes with a lot of
lambda-based functionalities. JUnit provides annotations to mark test methods for
automated execution, annotations for initialization and destruction of a test context
and utility methods to practically implement test methods. There are multiple JUnit
annotations that you can use. Five of them (and a utility class) represent the core of
the JUnit framework, which is the best place to learn testing. Below each of them are
a short description that builds a general picture of how JUnit can be used to test your
application.

o (@BeforeAll from package org.junit.jupiter.apiisused on anon-
private static method thatreturns void used to initialize objects
and variables to be used by all test methods in the current class. This
method is called only once, before all test methods in the class, so
test methods should not modify these objects, because their state is
shared and it might affect the test results. Eventually, the static fields
to be initialized by the annotated method, can be declared final,
so once initialized, they can no longer be changed. More than one
method annotated with @BeforeAll can be declared in a test class,
but what would be the point?

o (@AfterAll from package org.junit.jupiter.api is the counterpart
of @BeforeAll. It is also used to annotate non-private static
methods that return void, but their purpose is to destroy the context
the test methods were run in and perform cleanup actions.

o (@BeforeEach from package org.junit.jupiter.apiisused on
non-private non-static methods thatreturn void and as its
name says, methods annotated with it are executed before every
method annotated with @Test. These methods can be used to further
customize the test context to populate objects with values that tests
assertions in the test methods.

90Official JUnit 5 site: https://junit.org/junit5s/

374

https://junit.org/junit5/

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

o @AfterEach from package org.junit.jupiter.apiis used on
public non-static methods that return void and as its name
says, methods annotated with it are executed after every method
annotated with @Test.

e (@Test from package org.junit.jupiter.apiisused on non-private
non-static methods that return void and as its name says, the
method annotated with it is a test method. A test class can have one
or more, depending on the class that is being tested.

o Utility class org. junit. jupiter.api.Assertions provides a set of
methods that support asserting conditions in tests.

Another annotation that you might be interested to know it exists is @isplayName.
It is declared in the same package as all the others and receives a text argument that
represents the test display name, which is displayed by the editor and in the resulting
reports created by the build tool. Let’s write a pseudo test class so you can get an idea of
how test classes look.

package com.apress.bgn.ch9.pseudo;
import org.junit.jupiter.api.*;
import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertTrue;

public class PseudoTest {

private static final Logger log =
LoggerFactory.getLogger(PseudoTest.class);

@BeforeAll
public static void loadCtx() {

log.info("Loading general test context.");

}

@BeforeEach
public void setUp(){

log.info("Prepare single test context.");

375

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

@Test

@DisplayName("test one")

public void testOne() {
log.info("Executing test one.");
assertTrue(true);

}

@Test

@DisplayName("test two")

public void testTwo() {
log.info("Executing test two.");
assertFalse(false);

}

@AfterEach
public void tearDown(){

log.info("Destroy single test context.");

}

@AfterAll
public static void unloadCtx(){

log.info("UnLoading general test context.");

Keeping in mind the information that you now have about these annotations, when
running this class, we expect the log messages that each method prints to be in the exact
order that we have defined, because the methods have been strategically placed in the
previous code so the JUnit order of execution is respected. The only thing that cannot
be guaranteed is the order the tests are executed in. Also parallel execution of tests is
possible by adding a file named junit-platform.properties under test\resources
that contains the following properties with values matching the hardware configuration.

junit.jupiter.execution.parallel.enabled=true
junit.jupiter.execution.parallel.config.strategy=fixed
junit.jupiter.execution.parallel.config.fixed.parallelism=8

376

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

Most Java smart editors like Intelli] IDEA provide you with an option to do so when
you right-click the class. Figure 9-15 shows the menu option to execute a test class in
Intelli] IDEA.

11 G public class PseudoTest {
42

43 private static final Logger | Copy Reference {rscC
44 O paste BV
45 @BeforeAll i

46 public static void loadCtx() Paste from History... a3V
49 Paste Simple N8V
50 @BeforeEach .

51 public void setUp() { log.i Column Selection Mode %8
54

55 @Test Refactor >
56 @bisplayName("test one") ;

57 G public void testOne() { Folding >
58 log.info("Executing test Analyze >
59 assertTrue(condition: true

L” ¥ Go To >
62 @Test Generate... 3N
63 @DisplayName("test two")

64 G public void testTwo() { Recompile 'PseudoTest.java' 1+ 36F9
65 log.info("Executing test i >

66 assertFalse(condition: fal Run ‘PseudoTest ~OR
67 } # Debug 'PseudoTest' ~A%D
6% G Run 'PseudoTest' with Coverage

69 @AfterEach

Figure 9-15. Menu option to execute a test class in Intelli] IDEA

After right-clicking the class, select Run ‘PseudoTest.java’ from the menu that
appears. The test class is executed. A launcher is created. Test classes can be executed
in debug mode, and breakpoints can be used. When executing the previous class, even
if the test methods are run in parallel, the output is consistent with the order of the
methods matching the annotation specifications. To make sure that test methods are
executed in parallel, the logger was configured to print the thread ID. The following is a
sample output.

[1-worker-9] INFO c.a.b.c.p.PseudoTest - Loading general test context.
[1-worker-9] INFO c.a.b.c.p.PseudoTest - Prepare single test context.
[1-worker-2] INFO c.a.b.c.p.PseudoTest - Prepare single test context.
[1-worker-2] INFO c.a.b.c.p.PseudoTest - Executing test one.
[1-worker-9] INFO c.a.b.c.p.PseudoTest - Executing test two.
[1-worker-2] INFO c.a.b.c.p.PseudoTest - Destroy single test context.
[1-worker-9] INFO c.a.b.c.p.PseudoTest - Destroy single test context.
[1-worker-9] INFO c.a.b.c.p.PseudoTest - UnLoading general test context.

377

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

The testOne() method contains this line: assertTrue(true);, which is put there to
show you how assertion methods look like. The true value is replaced with a condition
in a real test. The same goes for the assertFalse(false); assertion in the textTwo()
method.

And that’s about all the space we can dedicate to JUnit in this book. But my honest
recommendation is to look more into it, because a developer can write code, but a good
developer knows how to make sure it works.

Using Fakes

A fake object is an object that has working implementations, but not the same as
the production object. The code written to implement such an object has simplified
functionality of the one deployed in production.

To test the AccountRepoImpl class, we have to replace the DerbyDBConnection with a
FakeDBConnection that is not backed up by a database, but by something simpler, more
accessible like a Map. The DerbyDBConnection uses a java.sql.Connection and other
classes in that package to perform data operations on the Derby database.

The FakeDBConnection implement the DBConnection interface, so it can be passed to
a AccountRepoImpl and all its methods is called on it.

The rule of thumb when writing tests and test supporting classes is to put them in
the same packages with the objects tested or replaced, but in the test/java directory.
But because we show you more than one approach of testing, each package is named
accordingly. The package to test the application classes using fakes is named com.
apress.bgn.ch9.fake.

Another rule of thumb when writing tests is to write a method to test the correct
outcome of the method being tested, and one to test the incorrect behavior. In unexpected
cases with unexpected data, your application behaves in unexpected ways, so although
this seems paradoxical, you have to expect the unexpected and write tests for it.

The AccountRepoImpl class implements the basic methods to persist or delete an
Account instance to/from the database. The implementation is depicted next.

package com.apress.bgn.ch9.repo;

import com.apress.bgn.ch9.Account;
import com.apress.bgn.ch9.db.DbConnection;

import java.util.Llist;
import java.util.Optional;

378

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING
public class AccountRepoImpl implements AccountRepo {
private DbConnection conn;

public AccountRepoImpl(DbConnection conn) {
this.conn = conn;

}

@Override
public Account save(Account account) {
Account dbAcc = conn.findByHolder(account.getHolder());
if(dbAcc == null) {
return conn.insert(account);

¥

return conn.update(account);
}
@verride

public Optional<Account> findOne(String holder) {
Account acc = conn.findByHolder(holder);
if(acc != null) {
return Optional.of(acc);

}

return Optional.empty();
}
@verride

public List<Account> findAll() {
return conn.findAll();

}

@verride
public int deleteByHolder(String holder) {
Account acc = conn.findByHolder(holder);
conn.delete(holder);
if(acc !'= null) {
return 0;

379

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

return 1;

To test this method we need to provide a DbConnection implementation that

simulates a connection to a database. This is where FakeDBConnection comes in.

package com.apress.bgn.ch9.fake.db;

import
import
import

import
import
import
import

public

/**

*

*/

com.apress.bgn.ch9.Account;
com.apress.bgn.ch9.db.DBException;
com.apress.bgn.ch9g.db.DbConnection;

java.util.Arraylist;
java.util.HashMap;
java.util.list;
java.util.Map;

class FakeDBConnection implements DbConnection {

pseudo-database {@code Map<holder, Account>}

Map<String, Account> database = new HashMap<>();

@verride
public void connect() {

}

// no implementation needed

@Override
public Account insert(Account account) {

380

if (database.containsKey(account.getHolder())) {
throw new DBException("Could not insert " + account);
}
database.put(account.getHolder(), account);
return account;

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

@verride
public Account findByHolder(String holder) {
return database.get(holder);

}

@verride

public List<Account> findAll() {
List<Account> result = new ArraylList<>();
result.addAll(database.values());
return result;

}

@verride
public Account update(Account account) {
if (!database.containsKey(account.getHolder())) {
throw new DBException("Could not find account for
getHolder());

+ account.

}

database.put(account.getHolder(), account);
return account;

}

@verride
public void delete(String holder) {
database.remove(holder);

}

@verride
public void disconnect() {
// no implementation needed

381

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

The FakeDBConnection behaves exactly like a connection object that can be used to
save entries to a database, search for them or delete them, only instead of a database is
backed up by a Map<String, Account>.The map key is the holder’s name, because in
our database the holder name is used as an unique identifier for an Account entry in the
table. Now, that we have the fake object, we can test that our AccountRepoImpl behaves
as expected. Because of practical reasons only one method is tested in this section, but
the full code is available on the official GitHub repo for the book.

The deleteByHolder method in the AccountRepoImpl deletes an account. If the entry
is present, it deletes it and returns 0; otherwise, it returns 1. The deleteByHolder method
is depicted in the next code snippet.

package com.apress.bgn.ch9.repo;

import com.apress.bgn.ch9.Account;
import com.apress.bgn.ch9.db.DbConnection;

import java.util.Llist;
import java.util.Optional;

public class AccountRepoImpl implements AccountRepo {
private DbConnection conn;

public AccountRepoImpl(DbConnection conn) {
this.conn = conn;

}

@verride
public int deleteByHolder(String holder) {
Account acc = conn.findByHolder(holder);
conn.delete(holder);
if(acc !'= null) {
return 0;

}

return 1;

382

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

The test class is depicted next, and both cases are covered (when there is an entry to
delete and when there isn’t).

package com.apress.bgn.ch9.fake;

import com.apress.bgn.ch9.Account;

import com.apress.bgn.ch9.db.DbConnection;

import com.apress.bgn.ch9.fake.db.FakeDBConnection;
import com.apress.bgn.ch9.repo.AccountRepo;

import com.apress.bgn.ch9.repo.AccountRepoImpl;
import org.junit.jupiter.api.*;

import org.slf4j.Logger;

import org.slf4j.lLoggerFactory;

import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;

public class AccountRepoTest {
private static final Logger log =
LoggerFactory.getLogger (AccountRepoTest.class);
private static DbConnection conn;

private AccountRepo repo;
@BeforeAll

public static void prepare() {
conn = new FakeDBConnection();

}

@BeforeEach
public void setUp(){
repo = new AccountRepoImpl(conn);

// inserting an entry so we can test update
repo.save(new Account("Pedala", 200, "2345"));

383

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

@Test

public void testFindOneExisting (){
Optional<Account> expected = repo.findOne("Pedala");
assertTrue(expected.isPresent());

}

@Test
public void testFindOneNonExisting(){

Optional<Account> expected = repo.findOne("Dorel");
assertFalse(expected.isPresent());

}

@AfterEach
public void tearDown(){
// delete the entry
repo.deleteByHolder("Pedala");

}

@AfterAll

public static void cleanUp(){
conn = null;
log.info("All done!");

Notice how, we are creating exactly one entry that is added to our fake database
before a test method is executed and deleted afterwards.

Now that we are sure the repository class does its job properly the next one to test is
the AccountServiceImpl. To test this class we look into a different approach. Fakes, are
useful but writing one for a class with complex functionality can be cost inefficient in
regards to development time. In the next section, we’ll look at stubs.

Using Stubs

A stub is an object that holds predefined data and uses it to answer test calls. An instance
of AccountServiceImpl uses an instance of AccountRepo to retrieve data from the
database or save data to a database. Considering we are writing unit tests, we want to
cover the functionality of the service class, so we can write a stub class to simulate the
behavior of AccountRepo. For the AccountServiceImpl instance to use it the stub must

384

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

implement AccountRepo. In this section the tests cover the method createAccount(...)
because there are multiple points of failure and we can write a lot of different tests for it.
In the following code snippet the createAccount(...) method is depicted.

package com.apress.bgn.ch9.service;

import com.apress.bgn.ch9.Account;
import com.apress.bgn.ch9.repo.AccountRepo;

import java.util.Optional;

ek

* @author Iuliana Cosmina

* @since 1.0

*/
public class AccountServiceImpl implements AccountService {

AccountRepo repo;

public AccountServiceImpl(AccountRepo repo) {
this.repo = repo;

}

@verride
public Account createAccount(String holder, String accountNumber,
String amount) {
int intAmount;
try {
intAmount = Integer.parseInt(amount);
} catch (NumberFormatException nfe) {
throw new InvalidDataException(
"Could not create account with invalid amount!");

}

if (accountNumber == null ||
accountNumber.isEmpty() || accountNumber.length() < 5
|| intAmount < 0) {
throw new InvalidDataException(
"Could not create account with invalid account number!");

385

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

Optional<Account> existing = repo.findOne(holder);
if (existing.isPresent()) {
throw new AccountCreationException(
"Account already exists for holder " + holder);
}
Account acc = new Account(holder, intAmount, accountNumber);
return repo.save(acc);

The createAccount(..) method takes as parameters the holder name, the number
of the account to be created and the initial amount. All of them are provided as String
instances intentionally, so that the method body contains a little bit of logic that would
require serious testing. Let’s analyze the behavior of the previous method and make a list
with all possible returned values and returned exceptions.

o Ifthe amount is not a number, an InvalidDataException is thrown.

o Ifthe accountNumber argument is empty, an InvalidDataException
is thrown.

o Ifthe accountNumber argument is null, an InvalidDataExceptionis

thrown.

o Ifthe accountNumber argument has less than five characters, an
InvalidDataException is thrown.

o Ifthe amount argument converted to a number is negative, an
InvalidDataException is thrown.

o Ifthere is an account for the holder argument already an
AccountCreationException is thrown.

o Ifall the inputs are valid and there is no account for the holder
argument, an Account instance is created, saved to the database, and
the result is returned.

386

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

So, if we were to be really obsessive about testing, we would have to write a test
scenario for all of these cases. In the software world, there is something called test
coverage, which is a process that determines whether test cases cover application code
and how much of it. The result is a percentage value and companies usually define a test
coverage percent'’ that represents a warranty of quality for the application. So, let’s write
all those tests methods, just for the practice. But before that, let’s see what the repo stub
looks like.

package com.apress.bgn.ch9.stub;

import com.apress.bgn.ch9.Account;
import com.apress.bgn.ch9.repo.AccountRepo;

import java.util.list;
import java.util.Optional;

public class AccountRepoStub implements AccountRepo {
private Integer option = 0;

public synchronized void set(int val) {
option = val;

}

@verride
public Account save(Account account) {
return account;

}

@verride
public Optional<Account> findOne(String holder) {
if(option == 0) {
return Optional.of(new Account(holder, 100 ,"22446677"));

}
return Optional.empty();

%A good read about test coverage, by Martin Fowler, one of the most renown Java gurus of this
generation: https://martinfowler.com/ bliki/TestCoverage.html

387

https://martinfowler.com/bliki/TestCoverage.html
https://martinfowler.com/bliki/TestCoverage.html

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

@verride
public List<Account> findAll() {
return List.of(new Account("sample", 100, "22446677"));

}

@verride
public int deleteByHolder(String holder) {
return option;

The option field can be used to change behavior of the stub to cover more test
cases. This is useful when test methods are not executed in parallel. Test execution is
done in parallel when time is of the essence, and if stubs are used, each method should
instantiate and use its own stub to avoid collisions with other methods, which will most
probably lead to test failures.

A negative test, passing for the situation when the input represents an invalid
amount can be written in two way using JUnit. The two approaches only differ in how
lambda expressions are used.

package com.apress.bgn.ch9.service;

import com.apress.bgn.ch9.Account;
import com.apress.bgn.ch9.service.stub.AccountRepoStub;
import org.junit.jupiter.api.*;

import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertThrows;

public class AccountServiceTest {

private static AccountRepoStub repo;
private AccountService service;

@BeforeAll
public static void prepare() {
repo = new AccountRepoStub();

388

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

@BeforeEach
public void setUp() {
service = new AccountServiceImpl(repo);

}

@Test
public void testNonNumericAmountVersionOne() {
assertThrows (InvalidDataException.class,
() > A{

service.createAccount("Gigi", "223311", "2I00");

};

}

@Test
public void testNonNumericAmountVersionTwo() {
InvalidDataException expected = assertThrows(
InvalidDataException.class, () -> {
service.createAccount("Gigi", "223311", "2I00");

)
assertEquals("Could not create account with invalid amount!"
, expected.getMessage());

}

@AfterEach
public void tearDown() {
repo.set(0);

}

@AfterAll
public static void destroy() {
repo = null;

The testNonNumericAmountVersionOne() method makes use of assertThrows that
receives two parameters: the type of exception that is expected for the second parameter
of type Executable to throw when executed. Executable is a functional interface defined
in the org.junit. jupiter.api.function, which can be used in a lambda expression to
get the compact test that you see.

389

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

The testNonNumericAmountVersionTwo() method saves the result of the
assertThrows(. .) call, which allows for the message of the exception to be tested and to
make sure that the execution flow worked exactly as expected.

The other tests are depicted in the following code snippet.

package com.apress.bgn.ch9.service;

import com.apress.bgn.ch9.Account;
import com.apress.bgn.ch9.service.stub.AccountRepoStub;
import org.junit.jupiter.api.*;

import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertThrows;

public class AccountServiceTest {

private static AccountRepoStub repo;
private AccountService service;

@BeforeAll
public static void prepare() {
repo = new AccountRepoStub();

}

@BeforeEach
public void setUp() {
service = new AccountServiceImpl(repo);

}

@Test
public void testEmptyAccountNumber() {
InvalidDataException expected = assertThrows(
InvalidDataException.class, () -> {
service.createAccount("Gigi", "", "2100");

)5
assertEquals("Could not create account with invalid account number!",
expected.getMessage());

390

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

@Test
public void testNullAccountNumber() {
InvalidDataException expected = assertThrows(
InvalidDataException.class, () -> {
service.createAccount("Gigi", null, "2100");

)
assertEquals("Could not create account with invalid account number!",
expected.getMessage());

}

@Test
public void testInvalidAccountNumber() {
InvalidDataException expected = assertThrows(
InvalidDataException.class, () -> {
service.createAccount("Gigi", "11", "2100");

)5
assertEquals("Could not create account with invalid account number!",
expected.getMessage());

}

@Test
public void testNegativeIntAmount() {
InvalidDataException expected = assertThrows(
InvalidDataException.class, () -> {
service.createAccount("Gigi", "112233", "-2100");

)5
assertEquals("Could not create account with invalid account number!",
expected.getMessage());

391

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

@Test
public void testCreateAccount() {
repo.set(1);
Account expected = service.createAccount("Gigi", "112233", "2100");
assertEquals("Gigi", expected.getHolder());
assertEquals("112233", expected.getNumber());
assertEquals(2100, expected.getSum());

}

@Test
public void testCreateAccountAlreadyExists() {
AccountCreationException expected = assertThrows(
AccountCreationException.class, () -> {
service.createAccount("Gigi", "112233", "2100");

)
assertEquals("Account already exists for holder Gigi",
expected.getMessage());

}

@AfterEach
public void tearDown() {
repo.set(0);

}

@AfterAll
public static void destroy() {
repo = null;

Similar methods can be written to test all other service methods. This is left as an
exercise for you. Because there is one more test technique we have to cover in this
chapter: using mocks.

392

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

Using Mocks

Mocks are objects that register calls they receive. During execution of a test, using assert
utility methods, the assumption that all expected actions were performed on mocks are
tested. Thankfully, code for mocks does not have to be written by the developer, there are
three well-known libraries that provide the type of classes needed to test using mocks:
Mockito," JMock,'? and EasyMock.'® Also, if you are ever in need to mock static methods,
the most common reason being bad design, there is PowerMock.™

Using mocks, you can jump directly to writing the tests. So, let’s write two tests for
the createAccount(..) method that focus on the repository class calling its methods,
because the repository class is being replaced by a mock.

package com.apress.bgn.ch9.mock;

import com.apress.bgn.ch9.Account;

import com.apress.bgn.ch9.repo.AccountRepo;

import com.apress.bgn.ch9.service.AccountCreationException;
import com.apress.bgn.ch9.service.AccountServiceImpl;
import com.apress.bgn.ch9.service.InvalidDataException;
import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.extension.ExtendWith;
import org.mockito.InjectMocks;

import org.mockito.Mock;

import org.mockito.junit.jupiter.MockitoExtension;

import java.util.Optional;

import static org.junit.jupiter.api.Assertions.*;
import static org.mockito.ArgumentMatchers.any;
import static org.mockito.Mockito.when;

@ExtendWith(MockitoExtension.class)
public class AccountServiceTest {

""Mockito official site: http://site.mockito.org/

20fficial site for]Mock: http://jmock.org/

BOfficial site for EasyMock: http://easymock.org/

“Official site for PowerMock: http://powermock.github.io/

393

http://site.mockito.org/
http://jmock.org/
http://easymock.org/
http://powermock.github.io/

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

@InjectMocks

private AccountServiceImpl service;

@Mock

private AccountRepo mockRepo;

@BeforeEach

public void checkMocks() {
assertNotNull(service);
assertNotNull(mockRepo);

}

@Test

public void testCreateAccount() {
Account expected = new Account("Gigi", 2100, "223311");
when(mockRepo.findOne("Gigi")).thenReturn(Optional.empty());
when(mockRepo. save(any(Account.class))).thenReturn(expected);

Account result = service.createAccount("Gigi", "223311", "2100");
assertEquals(expected, result);

}

@Test

public void testCreateAccountAlreadyExists() {
Account expected = new Account("Gigi", 2100, "223311");
when(mockRepo.findOne("Gigi")).thenReturn(Optional.of(expected));

assertThrows (AccountCreationException.class,

0 ->{

service.createAccount("Gigi", "223311", "2100");

};

The tests are self-explanatory; the Mockito utility methods names make it easy to
understand what is happening during a test execution. But how the mocks are created and
injected, needs to be explained. So, let’s do that! the @ExtendWith(MockitoExtension.
class) is necessary for JUnit 5 tests to support Mockito annotations. Without it
annotations like @InjectMocks and @ock have no effect on the code.

394

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

The @Mock annotation is to be used on references to mocks created by Mockito. The
preferred way to work with mocks is to specify a reference of an interface type that is
implemented by the real object type and the mock that is created for the test scenario.
But @Mock can be placed on a concrete type reference as well, and the created mock is a
subclass of that class.

The @InjectMocks annotation is used on the object to be tested, so that Mockito
knows to create this object and inject mocks instead of the dependencies.

So, this is basically all you need to know to start using Mockito mocks in your test.
Declaring the objects to be mocked and the object to be injected in is the only setup a
class containing unit tests using mocks needs.

The body of test methods using mocks have a typical structure. The first lines must
declare objects and variables passed as arguments to the method called on the object
being tested or passed as arguments to Mockito utility methods that declare what mocks
take as arguments and what they return. The next lines establish the behavior of the mock
when its methods are called by the object to be tested. The following two lines depict this
for the findOne(. .) method. The first line creates an account object. The second lines
define the behavior of the mock. When mockRepo.findOne("Gigi") is called, the previously
created account instance is returned wrapped in an Optional<T> instance.

Account expected = new Account("Gigi", 2100, "223311");
when(mockRepo.findOne("Gigi")).thenReturn(Optional.of(expected));

There are many other libraries to make writing tests effortless for developers. Big
frameworks like Spring provide their own testing library to help developers write tests for
applications. Build tools like Ant, Maven, and Gradle can automatically run tests when
the project is built, and generate useful reports related to the failures. Using Gradle,
the project can be built by calling gradle clean build in the console. All test classes
declared in the test module, are picked up automatically if they are named *Test. java.
When writing tests, and not changing application code, you can run the tests only by
calling gradle test. This is a configuration that can be changed by overloading the
Gradle test task; you can look into that if you are curious.

The Gradle reports are in HTML format so they can be opened in the browser, and
they look amazing. The reports are generated as a site with an index.html stat page,
which are located at java-bgn/chapter09/testing/build/reports/tests/test/
index.html.

I've chosen to fail a test intentionally so that you can see how that report looks like
(see Figure 9-16).

395

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING
Test Summary

21 1 0 0.369s 95%

tesls failures ignored duration]

Packages Classes

AccountRepoTest. teslFindOneExisting()

Failed tests Packages . Classes

Package Tests Failures Ignored Durati 5
com.aprass.bgn.chd fake 7 1 1] 0.005s 85%
com.apress.ban.chd.mock 4 0 0 0.357s 100%
com,apress.bgn.chd.pseudo 2 0 0 0.003s 100%
com.apress.bgn.chi.sarvice 8 0 0 0.004s 100%
Failed tests Packages Classes
Class Tests Failures Ignored D i 5 rate
com.apress.bgn.chd fake AccountRepoTest 7 1 0 0.005s 85%
com.apress.bgn.chd.mock. AccountService 4 0 0 0.357s 100%
com.apress.bgn.chd. pseudo.PseudoTest 2 0 0 0.003s 100%
com,apress.ban.chd service. AccountServicg Test a 0] 0.004s 100%
=
countRepoTest
| > com.apress.bgn.chd.fake > AccountRepoTest
7 1 0 0.005s 85%
tests failures ignored duration successful
Failed tests Tests Standard output
testFindOneExisting()
org.opentestdi.AssertionFailedError: expected: <false> but was: <true>

at org.junit.jupiter.api.hssertionUtils.fail (AssertionUtils.java:3g)

at jupiter.api.AssertFalse.assertFalse(hssertFalse.java:40)

at pxter api.AssertFalse.assertFalse(AssertFalse.java:35)

at piter.api.Assertions. nssenralae:asserr.mna java:l75)

at cm‘amn‘bqn‘chs fake P -testFi isting(h -java:i7)

AccountServiceTest
all > com.apress.bgn.chd.mock > AccountServiceTest

4 0 0 0.357s 100%

tests failures ignored duration successful
Tests

Test Duration Result

testCreateAccount() 0.001s passed

lestCreateAccountA dyExists() 0.006s passed

testDebitAccount() 0.345s passed

testDebitAccountDoesNotExists() 0.005s5 passed

Figure 9-16. The Gradle test reports

396

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

To conclude this section, remember this: no matter how good a development team
is, without a great testing team, the resulting application might actually be far away from
an acceptable quality standard. So, if you ever come across companies that do not have
a dedicated testing team, or at least a company culture that does not compromise in
techniques such as code review and writing tests, think twice before accepting that job.

Documenting

In the software world, there is a joke about documentation that might not be to
everybody’s liking, but it is worth a mention.

I Documentation is like sex: when it’s good, it is really, really good. And when it’s
bad, it’s still better than nothing.

A common-sense rule and best practice of programming is to write code that is self-
explanatory, so you won't need to write documentation. Basically, if you need to write
too much documentation, you're doing it wrong. There are a lot of things you can do to
avoid writing documentation, like using meaningful names for classes and variables,
respect the language code conventions and many others. But when you are building a
set of classes that is used by other developers, you need to provide a little documentation
for the main APIs. Of course, if your solution requires a very complicated algorithm to be
written, you might want to add comments here and there; although in this case, proper
technical documentation with schemas and diagrams should be written too.

The Javadoc block comments are associated with a public class, interface, method
body, or public field; sometimes even protected, if necessary. The Javadoc comments
contain special tags that link documented elements together, or mark the different type
of information. The Javadoc comments and their associated code can be processed by
Javadoc tools, extracted, and wrapped into an HTML site that is called the Javadoc API
of the project. The Gradle build tool that is used by this project exposes a task named
javadoc that can be executed to generate the Javadoc API site for a module. To compact
the documentation of a project with multiple modules a special plugin is needed." Also,
smart editors can access the documentation and display it when the developer tries to
write code using the documented components.

*Same goes for Maven and any other Java build tool.

397

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

Let’s start with a few examples of Javadoc comments to explain the most important
tags used.

Whenever we create a class or interface, we should add Javadoc comments to
explain their purpose, add the version of the application, and link existing resources.
IntSorter is a hierarchy of classes implementing the IntSorter interface that provides
implementations of different sorting algorithms. If these classes are used by other
developers, one of them might want to add a customized algorithm to our hierarchy and
a little information about the IntSorter interface would go a long way. In the following
code snippet, a Javadoc comment was added to the IntSorter interface.

package com.apress.bgn.ch9.algs;
Vioio

* Interface {@code IntSorter} is an interface that needs to be implemented
* by classes that provide a method to sort an array of {@code int} values. <p>
*

* {@code int[]} was chosen as a type because this type

* of values are always sortable.({@link Comparable})
*

* @author Iuliana Cosmina

* @since 1.0

*/
public interface IntSorter {

In the Javadoc comments, HTML tags can be used to format information. In
the previous code, <p> elements were used to make sure the comment is made of
multiple paragraphs. The @author tag was introduced in JDK 1.0. It is useful when
the development team is large, because if you end up working with somebody else’s
code, you know who to look for if issues appear. The @since tag provides the version
of the application in which this interface was added. For an application that has had
along development and release cycle, this tag can be used to mark the elements of a
specific version, so that a developer using the codebase of your application knows when
elements were added; and in a rollback to a former version, knows where compile-time
errors appear in the application.

398

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

The best example here is the Java official Javadoc; let’s take the Optional<T>
interface, which was introduced in version 8. But more methods were added to it in
versions 9, 10, and 11, and each of them are marked with the specific versions.

package java.util;

/**

* @param <T> the type of value
* @since 1.8

*/

public final class Optional<T> {

/x*

* @since 9
*/
public void ifPresentOrElse(Consumer<? super T> action, Runnable
emptyAction) {
if (value != null) {
action.accept(value);
} else {
emptyAction.run();

}

J¥*

* @since 10
*/
public T orElseThrow() {
if (value == null) {
throw new NoSuchElementException("No value present");

}

return value;

399

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

/**
* If a value is not present, returns {@code true}, otherwise
* {@code false}.
*
* @return {@code true} if a value is not present, otherwise {@code false}
* @since 11
*/
public boolean iskmpty() {
return value == null;

In the IntSorter example, you see the @code tag that was introduced in Java 1.5.
It displays text in code form, using a special font and escaping symbols that might
break the HTML syntax.(ex: < or >).The @link tag was added in Java 1.2 and inserts a
navigable link to relevant documentation.

Now, let’s document the method declarations to let the developer know what they
should be used for.

package com.apress.bgn.ch9.algs;
/**

* Interface {@code IntSorter} is an interface that needs to be implemented

* by classes that provide a method to sort an array of {@code int} values. <p>
*

* {@code int[]} was chosen as a type because this type

* of values are always sortable.({@link Comparable})
*

* @author Iuliana Cosmina

* @since 1.0

*/

public interface IntSorter {

400

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING
Jx*

* Sorts {@code arr}

*

* @param arr int array to be sorted

* @param low lower limit of the interval to be sorted

* @param high higher limit of the interval to be sorted
*/

void sort(int[] arr, int low, int high);
/**

* This method was used to sort arrays using BubbleSort
* @deprecated As of version 0.1, because the
* {@link #sort(int[], int, int) ()} should be used instead.
* To be removed in version 1.1
* @param arr int array to be sorted
*/
@Deprecated (since= "0.1", forRemoval = true)
default void sort(int[] arr) {
System.out.println("Do not use this! This is deprecated!!");

The Intelli] IDEA editor (and other smart editors) generate small pieces of Javadoc
for you. Once you have declared a class or method body that you want to document, type
/**, and press Enter. The generated block of comment contains the following.

e one or more @param tags with the parameter names, all is left for
the developer to do is to add extra documentation to explain their
purpose.

o ifthe method returns a value of a type different than void and
@return is added, documentation must be provided by the
developer to explain what the result represents and if there are
special cases when a certain value is returned. And since we started
using Optional<T> as a study case, here is the Javadoc of the
isPresent(..) method.

401

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

/**

* @param predicate the predicate to apply to a value, if present
* @return an {@code Optional} describing the value of this

* {@code Optional}, if a value is present and the value
matches the
* given predicate, otherwise an empty {@code Optional}

* @throws NullPointerException if the predicate is {@code null}
*/
public Optional<T> filter(Predicate<? super T> predicate) {
Objects.requireNonNull(predicate);
if (!isPresent()) {
return this;
} else {
return predicate.test(value) ? this : empty();

}

o ifthe methods declare an exception to be thrown, a @throws tag is

generated together with the exception type, the developer’s job is to
explain when and why that type of exception is thrown.

Vioio

* @param action the action to be performed, if a value is present
* @throws NullPointerException if value is present and the
given action is

* {@code null}
*/
public void ifPresent(Consumer<? super T> action) {

if (value != null) {

action.accept(value);

}

The @1ink creates a documentation link to a class page, a method documentation

section, or a field. In the previous sort method declaration example, we created a link to

the other method in the interface.

402

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

The @deprecated tag adds text explaining the reasons for deprecation, the version,
and what to use instead. Javadoc generation tools take this text format it with italic and
add it to the main description of the method.

And with this we have covered the most used tags when writing Javadoc comments.

If you want to check out the complete list, you can find it at https://docs.oracle.
com/javase/7/docs/technotes/tools/windows/javadoc.html#javadoctags. Javadoc
documentation is a wide subject that could provide material for an entire book. We are just
scratching the surface in this section and covering the basics so you have a good start.

To generate the HTML site for the logging-jul module, the easiest way to do
it, is to open the Gradle project view, expand the chapter09:logging-jul » Tasks >
Documentation node and under it we find the javadoc task, as depicted in Figure 9-17.
To execute the task, we have to double-click it.

Gradle projects
S + wN T T B A F
7 :chapter09
¢ @ :chapter09:logging-jul
:= Source Sets
w Tasks
= build
= documentation

- % help
other
= verification
% Run Configurations

Figure 9-17. The Gradle javadoc task
00:22:17: Executing task 'javadoc'...

> Task :chapter09:logging-jul:compileJava
/Users/iulianacosmina/apress/workspace/java-bgn/chaptero9/logging-jul/
src/main/java/com/apress/bgn/ch9/algs/InsertionSort.java:59:
warning: [removal] sort(int[]) in IntSorter has been deprecated and
marked for removal
public void sort(int[] arr) {

N

403

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html#javadoctags
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html#javadoctags

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

/Users/iulianacosmina/apress/workspace/java-bgn/chapter09/logging-jul/
src/main/java/com/apress/bgn/ch9/algs/HeapSort. java:55:
warning: [removal] sort(int[]) in IntSorter has been deprecated and
marked for removal
public void sort(int[] arr) {

N

2 warnings

> Task :chapter09:logging-jul:processResources
> Task :chapter09:logging-jul:classes
> Task :chapter09:logging-jul:javadoc

BUILD SUCCESSFUL in 2s
3 actionable tasks: 3 executed
00:22:19: Task execution finished 'javadoc'.

The javadoc task identifies the deprecated elements and prints a warning for the
developer to see. After the successful execution of that task, build directory can be
found under the logging-jul directory. That is where all Gradle tasks ran from IntelliJ
IDEA store their results. In this directory there should be a docs » javadoc directory
hierarchy. And if we expand the javadoc hierarchy we should see all the files making up
the Javadoc site of our module. The output to look forward to is depicted in Figure 9-18.

404

= chapter09
» logging-ju
build

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

classes
docs
javadoc

m B B B B

5

E 3

M B B EuELE

com
index-files
jauery
resources
allclasses-frame.html
. aliclasses-noframe.htm|
chapter.nine.jul-summary.html
constant-values.html
deprecated-list.htm|
element-list
help-doc.html
index.html
member-search-index.js
member-search-index.zip
module-search-index.js
module-search-index.zip
overview-frame.html
overview-summary.html
overview-tree.html
package-search-index.js
package-search-index.zip
script.js
search.js

¢ss Stylesheet.css

5

type-search-index.js
| type-search-index.zip

resources

tmp

> Src

& build.gradle

Figure 9-18. Javadoc site generated by execution of the Gradle javadoc task

Any site has a starting page and the default one is index. html. Right-click that file,

and from the context sensitive menu t

hat appears, select Open in Browser and select

your preferred browser. If you think the page resembles the JDK official Javadoc page,
you are not imagining it; the same Doclet API was used to generate that official one. For
a detailed view of all the documentation in the module(project), click the FRAMES link.
This redirects to a page that on the left; it has two frames: one with the packages of the
project and one with the classes/interfaces/enums and the frame on the right, which
displays information about every item clicked in frames on the left. You should be seeing

something similar to the page depicte

d in Figure 9-19.

405

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

A AR

ALL CLASSES
Packages

com.apress. bgn.chg
com.apress bgn.chd.algs

@ localhost:63342 flava-bgn/logging-jul/build/docsfjavadoc/inc 90% LAl a 1} |I\ II! Q @

{‘}.mnvisired @ cetting Sterted EEwork @oictee © @ ©@ © K 20tmctivne-koti. @ O O Q@ O © 1 © Daws © D @ © Eres

OVERVIEW MODULE PACKAGE |+i)-| USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHCD

Module chaptar.ning jul
Package com.apress bgn.chi.algs

Interface IntSorter

All Known Implementing Classes:

HeapSort, InsertionSort, MergeSort, QuickSort

public interface IntSorter

Interface IntSorter is an interface that needs to be implemented by classes that provide a method to sort an array of int values.

HeapSort
InserticnSort
IntSonter
MuorgeSort
CurchSor
SertingJuiDams

int[| was chosen as a type because this tvpe of values are always sortable. (Comparable)

Since:
10
Author:
Tuliana Cosmina
Method Summary
e [T p——
Medifier and Type Method Description
default void sort{int|] arr) Dep 1, for 1: This API el is subject to
removal in a future version.
As of version 0.1, because the {) should be used instead.
void sort{int[] arr, int low, Sorts arr

int high)

Figure 9-19. Javadoc site generated by execution of the Gradle javadoc task,

opened in the browser

Javadoc documentation is picked up by Intelli] IDEA and other smart editors, and

depicted on the spot when the developer uses the documented components in the

code. When selecting a class, method name, interface method, and so forth, most smart

editors provide some kind of combination of keys that include F1, which the developer

must press so that the documentation is depicted in a pop-up window. In Intelli] IDEA,

click an element and press F1, and the Javadoc documentation is shown in a pop-up

window and formatted nicely, as depicted in Figure 9-20.

406

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

Y=o
* @author Iuliana Cosmina
* @since 1.9
*/
public class DocDemo {
public static void main(String... args) {
IntSorter intSorter = new QuickSort();

intSorter.|))
¥ m__sort(int(] arr, int low, int high) MOIAR| on. apress.bgn. ch9.algs. Quicksort
: m = equals(Object obj) boolean | public void sort(int[] arr,
' hashCode{) int int low,
m & toString() String int high)
(s
get?lass_? Class<? extends ULleE\UI‘t.> Hioin TE woeks &
notify () void
notifyAlLl() void
walt) void Specified sortininterface IntSorter
wait (long timeout) void | 0
i = wait(long timeout, int nanos) void || Params: arr-intarray to be sorted
i Linel] void low - lower limit of the interval to
= i be sorted
Press ~. to choose the selected (or first) suggestion and insert a dot afterwards 2= 1T high = higher limit of the interval to
be sorted
& logging-jul_main O

Figure 9-20. Javadoc information depicted in Intelli] IDEA

You can view Javadoc information in a smart editor for any dependency of your
project (including JDK classes) as long as the code is open source and the module
exports the appropriate packages.

In Java 9, the Doclet API for generating Javadoc received an upgrade and a facelift.
Before Java 9, developers complained about the performance issues of the old version,
the cryptic AP], the lack of support and the shallowness of it over all. In Java 9, most
of the problems were resolved. A detailed description of improvements is at http://
openjdk.java.net/jeps/221.

Documentation is really valuable and can make development practical and pleasant
when it is really, really good. So, when writing code, document it as you expect the
dependencies of your project to be.

You might probably have heard of the expression RTFM, which is an abbreviation
for Read The F***ing Manual!. That expression is used a lot in software by experienced
developers when working with newbie developers. Problem is, what should you do when
there is no manual? Most companies on a deadline might have the tendency to allocate
little or no time to documenting a project. So, this section was added to this book to
emphasize the importance of documentation in software development, and teaching
you how to write your documentation while you write your code, because you might not
have time to do it afterwards.

407

http://openjdk.java.net/jeps/221
http://openjdk.java.net/jeps/221

CHAPTER9 DEBUGGING, TESTING, AND DOCUMENTING

Summary

This chapter covered important development tools and techniques, the classes in JDK that
provide support for them, and important Java libraries that could make your development
job more practical and pleasant. The following is the complete list of topics.

e how to configure and use logging in a Java application
o how to log messages in the console

e howtolog messages to a file

e how to use Java logging

o what alogging facade is and why it is recommended

» configuring and using SLF4] with Logback

e how to program using assertions

e how to debug using Intelli] IDEA

e how to monitor and inspect JVM statistics while an application is
running using various JDK tools: jps, jcmd, jconsole, and jmc

e howto use the Process API

e howto test an application using JUnit
o how to write tests using fakes

e how to write tests using mocks

o how to write tests using stubs

e how to document a Java application and generate documentation in
HTML format

408

CHAPTER 10

Making Your Application
Interactive

So far in the book input for our Java programs data was provided via arrays or variables
that were initialized inside the code or via program arguments. But most applications
nowadays require interaction with the user. The user can be provided access by entering
a username and a password; the user is sometimes required to enter information to
confirm his/her identity or to instruct the application what to do. Java supports multiple
methods for user input to be read. In this chapter a few ways to build interactive Java
applications are covered. Interactive Java application take their input either from the
console, either from Java built interfaces, either desktop or web.

JShell is a command line interface, where a developer can enter variable declarations
and one line statements that are executed when the Enter key is pressed. Command
line interface shells like bash and terminals like Command Prompt from Windows can
issue commands to programs in the form of successive lines of text. JShell was covered
at the beginning of the book for the simple reason that it was a Java 9 novelty. The next
sections cover how to read user-provided data and instructions using the command-line
interface. The sections after that focus on building Java applications with a desktop/web
interface.

Reading Data from the Command Line

This section is dedicated to reading user input from the command line, whether is the
Intelli] IDEA console, or if the program is run from an executable jar from any terminal
specific to an operating system. In the JDK, there are two classes that can be used to read
user data from the command line: java.util.Scanner and java.io.Console and this
section cover them both in detail. Without further ado, let’s get into it.

409

© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_10

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

Reading User Data Using System.in

Before introducing logging in Chapter 9 to print data in the console, methods under
System.out were used. There is also a counterpart utility object named System.

in used to read data from the console, data that a user of the program introduces to
control the application flow. You might have noticed that until now all Java programs,
when executed they would be started, they would process the data, would execute the
declared statements and then they would terminate, exit gracefully or with an exception
when something went wrong. The most simple and common way to pass decision of
termination to the user is to end the main method with a call to System. in.read(). This
method reads the next byte of data from the input stream and the program is paused
until the user introduces a value, as the value is returned we can even save it and print it.

import java.io.IOException;
public class ReadingFormStdinDemo {

public static void main(String... args) throws IOException {
System.out.print("Press any key to terminate:");

int read = System.in.read();
System.out.println("Key pressed:

+ read);

}

If you run the class using Intelli], you notice that the Press any key to terminate:
message is printed and then the application just hangs. If you click the window where
the message was printed and push any key, the byte value of the pressed key is printed
and then the application terminates. So if you were to execute the previous code and
press Enter, the following is what you see in the console.!

Press any key to terminate:
Key pressed: 10

But reading single bytes from the console is not really useful, right? Thankfully, there
is another form of the read(. .) method that saves the user entry into a byte array. But
since the size is fixed, no matter how long the user entry, only what fits in the array is

'ASCII Table and Description https://www.asciitable.com/

410

https://www.asciitable.com/

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

saved. The final <Enter> that ends the entry is returned as an int value equal to 3, which
is the code for end of text. So, the previous code changes to

package com.apress.bgn.ch10;
import java.io.IOException;
public class ReadingFormStdinDemo {

public static void main(String... args) throws IOException {
System.out.print("Press any key to terminate:");

byte[] b = new byte[3];

int read = System.in.read(b);

for (int i = 0; i < b.length; ++i) {
System.out.println(b[i]);

}
System.out.println("Key pressed:

+ read);

And now the user input is saved in the byte[] b array. But, it is not useful to just read
bytes, right? Well, let’s look at how we can read full text and numeric values from the
user: enter the java.util.Scanner class.

Using Scanner

The System. in variable is of type java.io.InputStream, which is a JDK special type
extended by all classes representing an input stream of bytes. This means that System.in
can be wrapped in any java.io.Reader extension so bytes can be read as readable data.
But, the one that is really important is a class named Scanner from package java.util.
An instance of this type can be created by calling its constructor and providing System.
in as an argument. The Scanner class provides a lot of next. . () methods that can be
used to read almost any type from the console. In Figure 10-1, you can see the next. . ()
methods list.

411

CHAPTER 10

MAKING YOUR APPLICATION INTERACTIVE

m next() String
m = next(String pattern) String
m = next(Pattern pattern) String
m = nextBigDecimal () BigDecimal
m = nextBigInteger|() BigInteger
m = nextBigInteger (int radix) BigInteger
m = nextBoolean () boolean
m nextByte () byte
m = nextByte(int radix) byte
m = nextDouble() double
m = nextFloat () float
m ‘& nextInt() int
m = nextInt(int radix) int
m = nextLine() String
m = nextLong() long
m = nextLong(int radix) long
m = nextShort() short
m = nextShort (int radix) short

Figure 10-1. Scanner methods for reading various types of data

The advantage of using Scanner to read data from the console is that the values read
are automatically converted to the proper types, when possible. When it is not possible,
a java.util.InputMismatchException is thrown. The following piece of code was
designed so you can select the type of value you want to read by inserting a text and then
the value. In the code, the appropriate method of the Scanner instance is called to read
the value.

package com.apress.bgn.ch10;

import java.io.IOException;
import java.math.BigInteger;
import java.util.Scanner;

public class ReadingFormStdinDemo {

public static final String EXIT = "exit";
public static final String HELP = "help";
public static final String BYTE = "byte";
public static final String SHORT = "short";
public static final String INT = "int";

412

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

public static final String BOOLEAN = "bool";
public static final String DOUBLE = "double";
public static final String LINE = "line";
public static final String BIGINT = "bigint";
public static final String TEXT = "text";

public static void main(String... args) throws IOException {
Scanner sc = new Scanner(System.in);
String help = getHelpString();
System.out.println(help);

String input;

do {
System.out.print("Enter option: ");
input = sc.nextLine();

switch (input) {
case HELP:
System.out.println(help);
break;
case EXIT:
System.out.println("Hope you had fun. Buh-bye!");
break;
case BYTE:
byte b = sc.nextByte();
System.out.println("Nice byte there: " + b);
sc.nextLine();
break;
case SHORT:
short s = sc.nextShort();
System.out.println("Nice short there:
sc.nextLine();

+s);

break;

case INT:
int i = sc.nextInt();
System.out.println("Nice int there:
sc.nextLine();
break;

+1);

413

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

case BOOLEAN:
boolean bool = sc.nextBoolean();
System.out.println("Nice boolean there: " + bool);
sc.nextLine();
break;

case DOUBLE:
double d = sc.nextDouble();
System.out.println("Nice double there: " + d);
sc.nextLine();
break;

case LINE:
String line = sc.nextline();
System.out.println("Nice line of text there:
break;

case BIGINT:
BigInteger bi = sc.nextBigInteger();
System.out.println("Nice big integer there: " + bi);
sc.nextLine();
break;

case TEXT:
String text = sc.next();
System.out.println("Nice text there: " + text);
sc.nextLine();

+ line);

break;
default:
System.out.println("No idea what you want bruh!");

}

} while (!input.equalsIgnoreCase(EXIT));
}

private static String getHelpString() {
return new StringBuilder("This application helps you test various
usage of Scanner. Enter type to be read next:")

414

.append("\n\t
.append("\n\t
.append("\n\t
.append("\n\t
.append("\n\t
.append("\n\t
.append("\n\t
.append("\n\t
.append("\n\t
.append("\n\t

}

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

help > displays this help")

exit > leave the application™)

byte > read a byte")

short > read a short")

int > read an int")

bool > read a boolean")

double > read a double")

line > read a line of text")

bigint > read a BigInteger")

text > read a text value").toString();

As you probably noticed in the code sample, most scanner methods are called

together with a nextLine(), this is because every input you provide is made of the actual

token and a new line character (the <Enter> pressed to end your input), and before you

can enter your next value, you need to take that character from the stream as well.

Let’s test the previous code a little.

This application
read next:
help >
exit >

helps you test various usage of Scanner. Enter type to be

displays this help
leave the application

byte > read a byte
short > read a short
int > read an int
bool > read a boolean

double >

read a double

line > read a line of text

bigint >

read a Biglnteger

text > read a text value
Enter option: byte

12
Nice byte there:

12

Enter option: bool

true

415

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

Nice boolean there: true

Enter option: line

some of us are hardly ever here

Nice line of text there: some of us are hardly ever here
Enter option: text

john

Nice text there: john

Enter option: text

the rest of us are made to disappear...

Nice text there: the

Enter option: double

4.2

Nice double there: 4.2

Enter option: int

AAAA

Exception in thread "main" java.util.InputMismatchException

at java.base/java.util.Scanner.throwFor(Scanner.java:939)

at java.base/java.util.Scanner.next(Scanner.java:1594)

at java.base/java.util.Scanner.nextInt(Scanner.java:2258)

at java.base/java.util.Scanner.nextInt(Scanner.java:2212)

at chapter.ten/com.apress.bgn.ch10.ReadingFormStdinDemo.main(
ReadingFormStdinDemo. java:78)

The output that is underlined in the listing, represents the test case for the next ()
method. This method should be used to read a single String token. The next token gets
converted to a String instance, and the token ends when a whitespace is encountered.
That is why, in the previous example the only read text ends up being the.

In the last case, the expected option is an integer value, but AAAA is entered, and
that is why the exception is thrown.

When you need to repeatedly read the same type of values from the console you
can peek at the value you want to read, and check it before reading it to avoid the
InputMismatchException being thrown. For this particular scenario, each of the next. . ()
methods has a pair method named hasNext. .. (). To show an example of how these
methods can be used, let’s add an option to the previous code to read a list of long
values.

416

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

public static final String LONGS = "longs";

String input;
do {
System.out.print("Enter option: ");
input = sc.nextLine();

switch (input) {
case LONGS:
List<Long> longlList = new ArraylList<>();
while (sc.hasNextLong()) {
longlList.add(sc.nextLong());
}
System.out.println("Nice long list there:
// else all done
sc.nextLine();
sc.nextLine();

+ longlist);

break;
default:
System.out.println("No idea what you want bruh!");

}
} while (!input.equalsIgnoreCase(EXIT));

Although seems weird, we need to call the nextLine() method twice. Once for the
character that cannot be converted to long, so the while loop ends and once for the end
of the line character, so the next read..() is the type of the following read value.

There are a few other methods in the Scanner class that can be used to filter the
input and read only desired tokens, but the methods listed in this section are the ones
you will probably use the most.

Reading User Data with java.io.Console

The java.io.Console class was introduced in Java version 1.6, one version later than
Scanner; it provides methods to access he character-based console device, if any,
associated with the current Java virtual machine. The methods of class java.io.Console

417

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

can thus be also used to write to the console, not only read user input. If the JVM is
started from a background process or a Java editor, the console will not be available, as
the editor redirects the standard input and output streams to its own window. That is
why if we were to write code using Console we can only test it by running the class or jar
from a terminal by calling java ReadingUsingConsoleDemo.class or java -jar using-
console-1.0-SNAPSHOT. jar. The console of a JVM, if available, is represented in the
code by a single instance of the Console class, which can be obtained by calling System.
console().

console.
m readLine() String
m = flush() void
m = format (String fmt, Object... args) Console
m & printf(String format, Object... args) Console
m - reader() Reader
m = readLine(String fmt, Object... args) String
m = readPassword () char(]
m - readPassword (String fmt, Object... args) char(]
m = writer() PrintWriter

Figure 10.2. Console methods

Figure 10-2 shows the methods that can be called on the console instance.

The read*(. .) methods are used to read user input from the console and
printf(..) and format(..) are used to print text in the console. The special cases here
are the two readPassword(. .) methods that allow text to be read from the console, but
not depicted while it is being written. This means that a Java application supporting
authentication can be written without any actual user interface. Let’s write a sample
code to see all that in action.

package com.apress.bgn.ch10;

import java.io.Console;
import java.util.Calendar;
import java.util.GregorianCalendar;

public class ReadingUsingConsoleDemo {
public static void main(String... args) {
Console console = System.console();

418

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

if (console == null) {
System.err.println("No console found.");
return;
} else {
console.writer().print("Hello there! (reply to salute)\n");
console.flush();

String hello = console.readlLine();
console.printf("You replied with: '" + hello + "'\n");

Calendar calendar = new GregorianCalendar();
console.format("Today is : %1$tm %1$te,%1$tY\n", calendar);

char[] passwordChar =
console.readPassword("Please provide password: ");
String password = new String(passwordChar);
console.printf("Your password starts with '"

+ password.charAt(0) + and ends with ""

+ password.charAt(password.length()-1) + ""\n");

}

In the code sample, various methods to read and write data using the console were
used to show you how they should be used.

The console.writer() returns an instance of java.io.PrintWriter that can be
used to print messages to the console. The catch is that the messages are not printed
until console.flush() is called. This means that more messages can be queued up by
the java.io.PrintWriter instance and printed only when flush() is called or when its
internal buffer is full.

The console.format(..) is called to print a formatted message, in this case a
Calendar instance extracts the current date and print it according to the following
template: dd mm,yyyy . Templates accepted by the console methods that use formatters
are defined in the java.util.Formatter class.

And now the good part: running this code in Intelli] is not possible, so we have to
either execute the class or the jar in a terminal. The easiest way is to create an executable
jar, Gradle creates one when gradle clean build is executed, because

419

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

the configuration was setup for the generated jar to be executable and for the main

class to be ReadingUsingConsoleDemo. The jar produced by Gradle can be found at
/chapter10/using-console/build/1ibs/using-console-1.0-SNAPSHOT.jar. Open a
terminal in Intelli] IDEA if you want to by clicking the Terminal button, and go to the
libs directory. Once there, execute java -jar using-console-1.0-SNAPSHOT.jar and
have fun. In the following code listing, you can see the entries I used to test the program.

$ cd chapter10/using-console/build/1libs/

$ java -jar using-console-1.0-SNAPSHOT.jar
Hello there! (reply to salute)

Salut!

You replayed with: 'Salut!’

Today is : 08 9,2018

Please provide password:

Your password starts with 'a’ and ends with 'e'

And this is all you need to know about using the console, although once working on
areal production-ready project, you might rarely need it.

Build Applications Using Swing

Swing is a GUI widget toolkit for Java. It is part of the JDK starting with version 1.2 and
was developed to provide more pleasant looking and practical components for building
user applications with complex interfaces with all types of buttons, progress bars,
selectable lists, and so forth. Swing is based on an early version of something called
AWT short for Abstract Window Toolkit, which is the original Java user-interface widget
toolkit. AWT was pretty basic, and had a set of graphical interface components that were
available on any platform, this means AWT was portable, but this did not imply that AWT
code written on one platform would work on another, because of the platform specific
limitations. AWT components depend on the native equivalent components, which is
why they were called heavyweight components. Figure 10-3 shows a simple Java AWT
application.

420

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

' [7:] ® Awt Demo Window

-- This is the header --

John Mayer
Frank Sinatra
Seth MacFarlane
Nina Simone

Bye Bye

-- This is the footer —-

Figure 10-3. Simple Java AWT application

It’s a simple window that contains a list, a text area and a button. The theme, also
called the look-and-feel of the application, is the same as the operating system it was
built on—macOS in the examples in this chapter— and it cannot be changed, AWT taps
into the OS native graphical interface. If you run the same code on a Windows machine,
the window will look different, because it will use the Windows theme.

Swing components are built in Java, follow the AWT model, but provide a pluggable
look-and-feel. Swing is implemented entirely in Java and includes all features of AWT,
but they are no longer depending on the native GUI, this is why Swing components are
called lightweight components. Swing provides everything AWT does and also extends
the set of components with higher-level ones such as tree view, list box, and tabbed
panes. Also, the theme is pluggable and can be easily changed. This implies a much
better portability than AWT applications, a possibility to write more complex application
design with components that are not platform specific, and because Swing is an
alternative to AWT, there was a lot more development done.

421

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

When web applications took flight, they were really ugly, because browsers had limited
capabilities. AWT was introduced to build Java web applications called applets. Java applets
were small applications that were launched from the browser and then executed within the
JVM installed on the user’s operating system in a process separate from the browser itself.
That is why an applet can be run in a frame of the web page, a new application window,
or standalone tools designed for testing applets. Java applets were using the GUI from the
operating system, which made them prettier than the bulky initial look of HTML at the time.
They are now deprecated and are scheduled to be removed in Java 11.

As for Java desktop applications written in Swing or AWT, they are rarely used
anymore, and you might learn to build one during school, but are otherwise ... they
are considered antique. Nevertheless, there are legacy applications used by certain
institutions and companies that have had a long run in their business, which are built
with Swing. I've seen Swing applications used by restaurants to manage tables and
orders and I think most supermarkets use Swing applications to manage shopping
items. And this is why this section exists in this book, because you might end up working
on maintaining such application and it is good to know the basics, because Swing is
still a part of the JDK. All Swing components (AWT too) are part of the java.desktop
module so if you want to use Swing components you have to declare a dependence on
this module. In the following configuration snippet, you can see that the module of our
project that uses Swing declares its dependency on the java.desktop module by using
the requires directive, in its module-info.java.

module chapter.ten.swing {
requires java.desktop;

The application depicted in Figure 10-3 was build using AWT, this section covers
building something similar in Swing and adding more components to it. The core class
of any Swing application is named JFrame and instances of this type are used to create
windows with border and title. So let’s write some code to do just that.

package com.apress.bgn.ch10;

import javax.swing.*;
import java.awt.*;

422

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

public class SwingDemo extends JFrame {

public static
SwingDemo

swingDemo.
swingDemo.

swingDemo.

void main(String... args) {
swingDemo = new SwingDemo();
setTitle("Swing Demo Window");
setSize(new Dimension(500,500));

setVisible(true);

In the code, an instance of javax. swing.JFrame is created, a title is set for it and

we also set a size so when the window is created we can see something. To display the
window, the setVisible(true) must be called on the JFrame instance. When you run
the previous code, a window like the one depicted in Figure 10-4 is displayed. By default
the window is positioned in the upper left corner of your main monitor, but that can be
changed by using some Swing components to compute a position relative to the screen
size. Determining size and position of a Swing window relative to screen size is only

limited by the amount of math you are willing to get into. Figure 10-4 shows a simple Java

Swing Window.

[BN Swing Demo Window

Figure 10-4. Simple Java Swing application

423

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

At this moment, if we close the displayed window, the application keeps running.
Because by default, closing the window makes it invisible by calling setVisible(false).
If we want to change the default behavior to exiting the application we have to change
the default operation performed when closing the window. This can be easily done by
adding the following line of code after creating the JFrame instance.

swingDemo.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

The JFrame.EXIT_ON_CLOSE constant is part of a set of constants that define
application behavior when the window is closed. This one declares that the application
should exit when the window is closed. The other available options are depicted in the
following list:

e DO _NOTHING ON_CLOSE - does nothing, including closing the window.

o HIDE ON_CLOSE - the default option, which causes
setVisible(false) to be called.

o DISPOSE ON CLOSE - an application can have more than one window,
this option exits the application when the last displayable window is
closed.

Most Swing applications are written by extending the JFrame class to gain more
control over its component, so the preceding code can also be written like this:

package com.apress.bgn.ch10;

import javax.swing.*;
import java.awt.*;

public class SwingDemo extends JFrame {

public static void main(String... args) {
SwingDemo swingDemo = new SwingDemo();
swingDemo.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
swingDemo.setTitle("Swing Demo Window");
swingDemo.setSize(new Dimension(500,500));

swingDemo.setVisible(true);

424

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

And now that we have a window, let’s start adding components, because changing
the look-and-feel is pointless if we do not have more components so we can notice the
change. Each Swing application has at least one JFrame that is the root, the parent of all
other windows, because windows can be created by using the JDialog class as well. The
JDialog is the main class for creating a dialog window, a special type of window that
contains mostly a message and buttons to select options. Developers can use this class
to create a custom dialogs or use JOptionPane class methods to create a variety of dialog
windows.

Back to adding components to a JFrame instance; components are added to a JFrame
by adding them to its container. A reference to the JFrame container can be retrieved
by calling getContentPane(). The default content pane is a simple intermediate
container that inherits from JComponent, which extends java.awt.Container (Swing
being an extension of AWT, most of its components are AWT extensions). For JFrame,
the default content pane is an instance of JPane. This class has a field of type java.awt.
LayoutManager that defines how other components are arranged in a JPane. The default
content pane of a JFrame instance, uses a java.awt.BorderLayout as its layout manager,
which splits a pane into five regions: EAST, WEST, NORTH, SOUTH, and CENTER. Each
of the zones can be referred by a constant with a matching name defined in the
BorderLayout. So if we would like to add an exit button to our application, we could add
it to the south region by writing the following code.

package com.apress.bgn.ch10;

import javax.swing.*;

import java.awt.*;

import java.awt.event.ActionEvent;
import java.awt.event.ActionlListener;

public class SwingDemo extends JFrame {
private JPanel mainPanel;
private JButton exitButton;

public SwingDemo(String title) {
super(title);
mainPanel = (JPanel) this.getContentPane();
exitButton = new JButton("Bye Bye!");
exitButton.addActionListener(new ActionListener() {
@verride

425

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

public void actionPerformed(ActionEvent e) {

System.exit(0);
}
D;

mainPanel.

}

public static
SwingDemo
swingDemo.
swingDemo

swingDemo

add(exitButton, BorderLayout.SOUTH);

void main(String... args) {
swingDemo = new SwingDemo("Swing Demo Window");
setDefaultCloseOperation(JFrame.DO NOTHING ON CLOSE);

.setSize(new Dimension(500, 500));

.setVisible(true);

Figure 10-5 shows the modified application. We've added an exit button in the
SOUTH area of the content pane and underlined the overall region arrangement of the

BorderLayout.
@ ® Swing Demo Window
NORTH
WEST | CENTER | EAST

Bye Bye! SOUTH

Figure 10-5. Border layout zones

426

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

Also, because the new button has to be the only way to exit our application, the set
DefaultCloseOperation(JFrame.EXIT ON_CLOSE); was replaced with setDefaultClose
Operation(JFrame.DO_NOTHING ON CLOSE); and an java.awt.event.ActionlListener
instance was attached to the button, so it could record the event of the button
being clicked and react accordingly, in this case exiting the application. Most Swing
components support listeners that can be defined to capture events that are performed
on the object by the user and react in a certain way.

As you can see, the button expands and fills the entire space of the region, because it
inherits the dimension of the region. To avoid that, the button should be put in another
container and that container should use a different layout: the FlowLayout. As the name
implies, this layout allows for Swing components to be added in a directional flow, like
in a paragraph. Adjustments can be made similar to a text formatting in text document
and constants are defined for components being aligned: in the center (CENTER), left-
justified (LEFT), and so forth. In the next code sample, we wrapped the exitButtonina
JPanel that makes use of the FlowLayout.

public SwingDemo(String title) {
super(title);
mainPanel = (JPanel) this.getContentPane();

exitButton = new JButton("Bye Bye!");
exitButton.addActionListener(e -> System.exit(0));

JPanel exitPanel = new JPanel();

FlowLayout flowlLayout = new FlowLayout();
flowLayout.setAlignment(FlowLayout.RIGHT);
exitPanel.setlLayout(flowlLayout);
exitPanel.setComponentOrientation(ComponentOrientation.RICHT TO LEFT);
exitPanel.add(exitButton);

mainPanel.add(exitPanel, BorderLayout.SOUTH);

427

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

There are more layouts that can be used, but let’s complete the application by adding
a list with a number of entries and add a listener to it so when you click an element it is
added to a text area in the center of the frame. A swing list can be created by instantiating
the JList<T> class. This creates an object that displays a list of objects and allows the
user to select one or more items. The swing JList<T> class contains a field of type
ListModel<T> that manages the data contents displayed by the list. When created and
elements were added, each object is associated with an index, and when the user selects
an object the index can be used for processing as well. In the next snippet the JList
object is declared, initialized, a ListSelectionlListener is associated with it, to define
the action to perform when an element from the list is selected. In our case the element
value, must be added to a JTextArea, so this object is depicted in the code.

private static String[] data = {"John Mayer", "Frank Sinatra",
"Seth MacFarlane", "Nina Simone", "BB King", "Peggy Lee"};

private JList<String> list;
private JTextArea textArea;

textArea = new JTextArea(50, 10);

//NORTH
list = new JList<>(data);
list.addListSelectionListener(new ListSelectionListener() {
@Override
public void valueChanged(ListSelectionEvent e) {
if (le.getValueIsAdjusting()) {
textArea.append(list.getSelectedValue() + "\n");

}

D;
mainPanel.add(list, BorderLayout.NORTH);

//CENTER

JScrollPane txtPanel = new JScrollPane(textArea);
textArea.setBackground(Color.LIGHT GRAY);
mainPanel.add(txtPanel, BorderLayout.CENTER);

428

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

Ifyou click a list element, two things happen: the previous element is deselected, and
one that was clicked the most recently is selected, so the selected element changes. The
getValueIsAdjusting() method returns whether or not this is one in a series of multiple
events, where changes are still being made, and we test if this method returns false to
check that the selection has been already made, so we can get the value of the current
selected element and add it to the text area.

Regarding the JTextArea instance, this one is added to a JScrol1Pane instance, which
allows for the textArea contents to still be visible as it fills with text by providing a scrollbar
or two, depending on the configuration. The JScrol1Pane can also be wrapped around a list
with too many items to make sure all of them are accessible. Also, as we are not interested in
user provided input via the text area, the setEditable(false); method is called.

Now that we have a more complex application, it is time to play with the look-and-
feel of the application. Until now, we've used the default one, the one provided by the
underlying Operation System. But with Swing, the look-and-feel can be configured as
one of the defaults supported by the JDK or extra custom ones can be used, which are
provided as dependencies in the project class path, or developers can create their own.
To specify a look-and-feel explicitly, the following line of code must be added in the
main method, before any swing component is created: UIManager. setLookAndFeel(..).
This method receives as parameter a String value representing the fully qualified
name of the appropriate subclass of look-and-feel. Although not necessary, you
could specify explicitly that you want to use the native GUI by calling: UIManager.
setLookAndFeel (UIManager.getCrossPlatformLookAndFeelClassName()) ;. Knowing
this, let’s do something interesting. The UIManager class contains utility methods and
nested classes used to manage look-and-feel for swing applications. One of this methods
is getInstalledLookAndFeels(), which extracts the list of supported look-and-feels
and returns them as a LookAndFeelInfo[]. Knowing this, let’s list all the supported
themes, add them to our list, and when the user selects one of them, let’s apply them.
Unfortunately, as swing is rarely used these days, there are not that many custom look-
and-feels that we could use in our application. So, the only thing to do is to work with
what JDK has. First, let’s initialize the data array with the fully qualified class names.

private static String[] data;

public static void main(String... args) throws Exception {
UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeel
ClassName());

429

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

UIManager.LookAndFeelInfo[] looks = UIManager.getInstalledLookAnd

Feels();
data = new String[looks.length];
int i =0;

for (UIManager.LookAndFeelInfo look : looks) {
data[i++] = look.getClassName();

}

SwingDemo swingDemo = new SwingDemo("Swing Demo Window");
swingDemo.setDefaultCloseOperation(JFrame.DO_NOTHING ON_CLOSE);
swingDemo.setSize(new Dimension(500, 500));

swingDemo.setVisible(true);

Now, the ListSelectionListener implementation becomes a little complicated,
because after selecting a new look and feel class, we have to call repaint() on the
JFrame instance to apply the new look and feel, so we’ll take the declaration out into its
own class and provide the SwingDemo object as argument, so repaint() can be

called on it, inside the valueChanged(. .) method.

private class LFListener implements ListSelectionListener {
private JFrame parent;

public LFListener(JFrame swingDemo) {
parent = swingDemo;

}

@0verride
public void valueChanged(ListSelectionEvent e) {
if (le.getValueIsAdjusting()) {

textArea.append(list.getSelectedValue() + "\n");
try {

UIManager.setLookAndFeel(1list.getSelectedValue());

Thread.sleep(1000);

parent.repaint();
} catch (Exception ee) {

430

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

System.err.println(" Could not set look and feel! ");

If we run the modified program, and select each item in the list one by one, we
should see the window look change a little bit. Figure 10-6 shows all windows side by
side; the differences are barely noticeable, but they are there.

Swing Demo Window

[NN] Swing Demo Window

| javax.swing.plaf.metal.MetalLookAndFeel

javax.swing.plaf.nimbus NimbusLookAndFeel
com.sun.java.swing.plaf.motif.MotifLookAndFeel
icom.apple.laf.AqualookAndFeel
iiavax.sMng‘plaf.megzl.MetalLookAndFeel

| javax.swing.plaf.nimbus.NimbusLookAndFeel

com.sun.java.swing.plaf.motif.MotifLook AndFeel
| com.applelaf.AqualookAndFeel

| javax.swing.plaf.metal.MetalLookAndFeel

F;_j avax.swing.plaf.nimbus.NimbusLookAndFeel

-l

4 1ml »

Bye Bye! | Bye Bye! |
® @ Swing Demo Window ® @ Swing Demo Window
javax.swing.plaf.metal.MetalLookAndFeel javax.swing.plaf.metal.MetalLook AndFeel
javax.swing.plaf.nimbus.NimbusLookAndFeel ljavax.swing.plaf.nimbus.NimbusLookAndFeel
com.sun.java.swing.plaf.motif.MotifLookAndFeel]c_qml._s_yn.jf_yﬁ_,s_w_i_ af.motif.MatifLook AndFeel |
com.apple.laf.AquaLookAndFeel com.apple.laf.Aqua ¢ - |
javax.swing.plaf. metal.MetalLookAndFeel - [

javax.swing.plaf.nimbus.NimbusLookAndFeel
com.sun.java.swing.plaf.motif. MotifLookAndFeel

Bye Bye! ‘

Bye Bye!

-

Figure 10-6. Different Look And Feel provided by JDK

This is what you can do with Swing components with a few lines of code. There are
alot more components that in the Swing library, but as it not really used anymore, as
the focus is on web applications, this section has to end here. If you ever need to create

or maintain a Swing application, Oracle provides an extensive tutorial with a lot of
examples that you can directly copy/paste and adapt to your necessities.

*Oracle extensive Swing tutorial: https://docs.oracle.com/javase/tutorial/uiswing/

examples/layout/index.html

431

https://docs.oracle.com/javase/tutorial/uiswing/examples/layout/index.html
https://docs.oracle.com/javase/tutorial/uiswing/examples/layout/index.html

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

Introducing JavaFX

JavaFX Script was a scripting language designed by Sun Microsystems, forming part

of the JavaFX family of technologies on the Java Platform. It was released shortly after
JDK 6 in December 2008 and for a while developers expected it to be dropped because

it really did not catch on that much, being a totally different language and all. But after
acquiring Sun Microsystems, Oracle decided to keep it and they transformed it into

the JavaFX library, which is a set of graphics and media packages that can be used by
developers to design, create, test, debug, and deploy rich client applications that operate
consistently across diverse platforms. And yes, mobile ones too. JavaFX is intended to
replace Swing as the main GUI library of the JDK, but so far, both Swing and JavaFX have
been part of all JDK versions until 10. That changed in JDK 11. Starting with JDK 11,
JavaFX is available as a separate module, decoupled from the JDK. JavaFX is still not used
as much as Oracle hoped, and separating it from the JDK might encourage the OpenJFX
community to contribute with some innovative ideas, which might transform this library
into an actual competitor for the other existing GUI toolkits on the market (e.g., Eclipse
SWT?). So let’s waste no time and start writing code to create an application similar to
the previous one using JavaFX.

Being part of the JDK now, and having classes and other components, JavaFX code is
currently normal Java code, so no more scripting. JavaFX components are defined under
alist of java.fx.* modules. The following configuration snippet, shows that the module
of our project that uses JavaFX declares its dependency on a few java.fx modules by
using the requires directive, in its module-info. java.

module chapter.ten.javafx {
requires javafx.base;
requires javafx.graphics;
requires javafx.controls;
opens com.apress.bgn.ch10 to javafx.graphics;

3SWT is an open source widget toolkit for Java designed to provide efficient, portable access to the
user-interface facilities of the operating systems on which it is implemented. More about it on
the official site: https://www.eclipse.org/swt/

432

https://www.eclipse.org/swt/

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

And because the JavaFX application launcher uses reflection to launch an
application, you need to open the package containing the implementation; otherwise,
an java.lang.IllegalAccessException is thrown, so that is why in the previous
configuration the opens com.apress.bgn.ch10; exists.

Let’s start with a simple window that has a closing option. I'll explain how it is
executed because JavaFX is a little different from Swing and AWT. The code to display a
plain square window is depicted next.

package com.apress.bgn.ch10;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class JavaFxDemo extends Application {
public static void main(String... args) {
launch(args);

}

@verride
public void start(Stage primaryStage) {
primaryStage.setTitle("JavaFX Demo Window!");

StackPane root = new StackPane();
primaryStage.setScene(new Scene(root, 500, 500));
primaryStage.show();

The first thing you need to know is that the main class of the application must
extend the javafx.application.Application class, because this is the entry point for
a JavaFX application. This is required because JAVA FX applications are run by a new
performance graphics engine named Prism that sits on top of the JVM. Aside from
Prism, the graphic engine, JavaFX comes with its own windowing system named Glass, a
media engine and a web engine. They are not exposed publicly, the only thing available
to developers is the JavaFX API that provides access to any components you might need
to build application with fancy interfaces. All of these engines are tied together by the

433

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

Quantum toolkit, which is the interface between these engines and the layer above in
the stack. The Quantum toolkit manages execution threads and rendering.

The launch(...) method is a static method in the Application class that launches
a standalone application. It is usually called from the main method and can only be
called once; otherwise, a java.lang.IllegalStateException is thrown. The launch
method does not return until the application is exited by closing all windows or calling
Platform.exit(). The launch method creates an JavaFxDemo instance, calls the init()
method on it and then calls start(..). The start(..) method is declared abstract in
the Application class, so the developer is forced to provide a concrete implementation.

A JavaFX application is built using components defined under the javafx.scene
and has a hierarchical organization. The core class of the javatx.scene package is the
javafx.scene.Node that is the root of the Scene hierarchy. Classes in this hierarchy
provide implementations for all of the visual elements of the application’s user interface.
Because all of them have Node as a root class, visual elements are called nodes, which
makes an application a scene graph of nodes and the initial node of this graph is called a
root. Each node has an unique identifier, a style class and a bounding volume, and with
the exception of the root node, each node in the graph has a single parent and zero or
more children. Aside from that a node has the following properties.

o effects, such as blurs and shadow - useful when you hover with your
mouse over the interface to make sure you click the right component

e oOpacity
o transformations - changing visual state or position

o event handlers - similar to listeners in Swing, used to define reaction

on mouse, key and input method
e application specific state

The scene graph simplifies building rich interfaces a lot and, because it also includes
graphics primitives as rectangles, text, images and media and also, animating various
graphics can be accomplished by the animation APIs for package javax.animation.

If you are interested in finding out more on what'’s under the hood of JavaFX, read the
article at https://docs.oracle.com/javafx/2/architecture/jfxpub-architecture.
htm, because the focus of this book is on how to do things rather than how they work,
unless it really influences the design of your future solutions.

434

https://docs.oracle.com/javafx/2/architecture/jfxpub-architecture.htm
https://docs.oracle.com/javafx/2/architecture/jfxpub-architecture.htm

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

We've started again with a simple window. The first step is to add a button to quit the
application. As rendering a JavaFX application involves a rendering engine, this means
it has to shutdown gracefully, so calling System.exit(0) is no longer a preferred option.
So the contents of the start(..) methods become the following.

public void start(Stage primaryStage) {
primaryStage.setTitle("JavaFX Demo Window!");

Button btn = new Button();
btn.setText("Bye bye! ");
btn.setOnAction(new EventHandler<ActionEvent>() {

@verride
public void handle(ActionEvent event) {
Platform.exit();
}
D;

StackPane root = new StackPane();
root.getChildren().add(btn);
primaryStage.setScene(new Scene(root, 500, 500));
primaryStage.show();

If we run the JavaFxDemo class, the window depicted in Figure 10-7 pops up on your
screen, and if you click the Bye bye! Button, the application is gracefully closed because
of the Platform.exit(); call.

435

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

O @® Java FX Demo Window!

Bye bye!

Figure 10-7. JavaFX Window Demo

But the button was just thrown in the window and put in the center by default
because no code was written to position it. JavaFX supports arranging nodes® in a
window in a manner similar to Swing, but JavaFX provides layout panes that support
several different styles of layouts. The equivalent of a JPane with BorderLayout manager
in JavaFX is a built-in layout named BorderPane. The BorderPane provides five regions
where to place your nodes, with distribution similar to BorderLayout, but different
names. Let’s write the code to place our button in the bottom region in the right corner
and then discuss more about it.

public void start(Stage primaryStage) {
primaryStage.setTitle("JavaFX Demo Window!");

Button exitButton = new Button();
exitButton.setText("Bye bye! ");
exitButton.setOnAction(event -> Platform.exit());

BorderPane borderPane = new BorderPane();
HBox box = new HBox();

‘It was mentioned that the root class for all Java FX components is named Node, so instead of
components, Java FX components is referred as nodes in this section.

436

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

box.setPadding(new Insets(10, 12, 10, 12));
box.setSpacing(10);

box.setAlignment (Pos.BASELINE RIGHT);
box.setStyle("-fx-background-color: #85929¢e;");
box.getChildren().add(exitButton);
borderPane.setBottom(box);

StackPane root = new StackPane();
root.getChildren().add(borderPane);
primaryStage.setScene(new Scene(root, 500, 500));
primaryStage.show();

If we run the JavaFxDemo class the window depicted in Figure 10-8 pop up on your
screen. The figure has been modified to show the regions of a BorderPane.

L N Java FX Demo Window!
Top
Left | Center . Right

Figure 10-8. JavaFX Window Demo

437

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

The approach to decide where our button should be located is similar to Swing,
with a few differences. The BorderPane has 5 regions named: Top, Bottom, Center, Left
and Right. To place a node in each of those regions a set*(. .) method for each of them
has been defined: setTop(..), setBottom(..), setCenter(..), setlLeft(..)and
setRight(..). To further customize the position of the node, it should be placed in a
HBox node, another JavaFX element that can be customized extensively. As you can see
from the code, we are setting the background using CSS style elements, we customize
the space between nodes in it and borders of the containing node by using an instance
of class Insets and we customize the alignment of the contained nodes by calling
box.setAlignment(Pos.BASELINE RICHT).And there are a lot more things that HBox
supports, so what you can do with a box is limited (mostly) only by your imagination.

So aside from all making pretty code in the preceding code sample, this was
done: the root node became parent to a BorderPane node, in the bottom region of the
BorderPane, a HBox was added, and this HBox instance became parent for a Button. This
organization is hierarchic, with the button being the last node in the hierarchy.

Also, we avoided using a layer pane by styling the HBox node properly.

It is time to add the last functionality to our application: the text area and a list
with selectable elements to add values to the text area. To create a text area in JavaFX
is simple. The class is named in an clear manner: TextArea. We can directly add the
node in the center region of the BorderPane because the JavaFX text area is scrollable
by default. So there is no need to putitin a ScrollPane, although the class does exist in
the javafx.scene.control package and is useful to display nodes inside it that make
a form that is bigger than the window size. The following three lines of code create a
node of type TextArea, declare it to not be editable, and add it to the center region of the
BorderPane.

TextArea textArea = new TextArea();
textArea.setEditable(false);
borderPane.setCenter(textArea);

Next one is the list. The list is a little more complicated, but also a lot more fun
to work with, because using JavaFX there is a lot you can do with a list. The class that
needs to be instantiated to create a list object is named ComboBox. This class is just
one of a bigger family of classes used to create lists, the root class being the abstract
class ComboBoxBase. Depending on the desired behavior of the list, if we want support
for single or multiple selection, if we want the list to be editable or not, the proper
implementation should be chosen. In our case, the ComboBox class matches the

438

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

requirements: we need a non-editable list, which supports single element section.

A ComboBox has a valueProperty() method that returns the current user input. The user
input can be based on a selection from a drop-down list or the input manually provided
by the user when the list is editable. Let’s see the code to add a list to the top section of
the BorderPane and add a listener to record the selected value in the TextArea that we
previously declared.

private static String[] data = {"John Mayer", "Frank Sinatra",
"Seth MacFarlane", "Nina Simone", "BB King", "Peggy Lee"};

ComboBox<String> comboBox = new ComboBox<>();
comboBox.getItems().addAll(data);
borderPane.setTop(comboBox);

comboBox.valueProperty().addListener(
new Changelistener<String>() {
@verride
public void changed(ObservableValue<? extends String> observable,
String oldvalue, String newValue) {
textArea.appendText(newValue + "\n");

1

The ComboBox value field (accessed by calling comboBox.valueProperty())
is an ObservableValue<T> instance. The listener is an instance of type
Changelistener<String> is added to this instance by calling the addListener(..)
method. Anytime the comboBox value field changes, the changed(. .) method of the
listener is called. The changed(. .) method receives as argument the previous list
selected value as well as the currently selected value, because who knows, maybe we
have some logic that requires both.

In AWT and Swing, there was not much that you could do with a list visually. You had
the look and feel and that was that. JavaFX supports more visual customization for nodes
because it even supports CSS. That is why in the next section we’ll make our ComboBox
list interesting. In JavaFX each entry in a list is a cell that can be drawn differently. To do
that, we have to add a Cel1lFactory to this class, which creates an instance of ListCell
for each item in a list. If a Cel1Factory is not specified the cells is created with the
default style. Let’s see the code first and explain more after.

439

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

comboBox. setCellFactory(
new Callback<>() {
@verride
public ListCell<String> call(ListView<String> param) {
return new ListCell<>() {

{
super.setPrefWidth(200);

}

@verride
public void updateItem(String item, boolean empty) {
super.updateIltem(item, empty);
if (item != null) {
setText(item);
if (item.contains("John") || item.contains("BB")) {
setTextFill(Color.RED);
} else if (item.contains("Frank") || item.contains("Peggy")) {
setTextFill(Color.GREEN);
} else if (item.contains("Seth")) {
setTextFill(Color.BLUE);
} else {
setTextFill(Color.BLACK);

}
} else {
setText(null);
}
}
};
}
};

The javafx.util.Callback interface is a practical interface that can be used to
declare a subsequent action for a certain action, if a callback is needed. In this case the
subsequent action is doing the following: after a String value is added to the ListView of
the ComboBox node (ListView is the visual, the interface type of a ComboBox that displays
a horizontal or vertical list of items), a cell is being created and some piece of logic was
inserted there to decide the color of the text depicted in the cell based on its value.

440

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

Inside the ListCell declaration there is a block of code that seems out of place.

super.setPrefWidth(200);

The block is an interesting way to call a method from the parent class inside the
declaration of an anonymous class. The setPrefWidth(200) is called here to make sure
all the ListCell<> instances have the same size. The logic in the updateItem(..) is
quite obvious, and thus it does not need any extended explanation. The result of adding
the cell factory can be viewed in Figure 10-9.

And this is all the space we can give to JavaFX in this book. As long as you have a
vague idea of why the JavaFX components are called nodes, you have a pretty good
starting point. If you are curious, Oracle has some pretty good tutorials about it at
https://docs.oracle.com/javase/8/javase-clienttechnologies.htm.

[oW Java FX Demo Window!

2]

John Mayer
Frank Sinatra
Seth MacFarlane
BB King

Peggy Lee

Figure 10-9. JavaFX Colored ComboBox Demo

441

https://docs.oracle.com/javase/8/javase-clienttechnologies.htm

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

Internationalization

Interactive applications are usually created to be deployed on more than one server
and available 24/7 and in multiple locations. As not all of us speak the speak the same
language, the key to convince people to become your clients and use your application
is to build it in multiple languages. The process of designing an application so that it
meets user needs in multiple countries and easily adapts to satisfy those needs is called
internationalization. For example we can take the initial Google page. Depending on
the location where it is accessed, it changes language according to that area. When you
create an account, you can select the language you prefer. This does not mean that the
Google has built a web application for each region, it’s a single web application that
displays text in different languages depending on the location. Internationalization
should always be taken into consideration in the design phase of an application,
because adding it later is difficult. We do not have a web application, but we are
internationalizing a JavaFX application in this section.

When you start reading about internationalization you might notice that files or
directories containing the internationalization property files are named i118n, which is
because there are 18 letters between i and » in this word.

Internationalization is based on locale. Locale is the term given to a combination
of language and region. The application locale is the one that decides which
internationalization file customizes the application. The locale concept is implemented
in Java by the java.util.Locale class and a Locale instance represents a geographical,
political or cultural region. When an application depends on the locale we say that it
is locale-sensitive, as most applications are nowadays. But selecting a locale can be
something an user has to do as well. Each Locale can select the corresponding locale
resources, these are files containing locale specific configurations. These files are
grouped per locale and can usually be found under the resources directory. These
resources are used to configure an instance of java.util.ResourceBundle that can
manage locale-specific resources.

To build a proper use case for localization, the previous JavaFX application is
modified; instead of singer names, the list contains a list of pet names with labels that
can be translated in various languages. A list with the available languages is added,
and when a language is selected from this list, a Locale static variable is set with the
corresponding locale and the window is reinitialized so that all labels can be translated
to the new language. Let’s start by creating the resource files.

442

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

Resource files have the properties extension that contain a list of properties and
values. Each line respects the following pattern: property name=property value, if
it doesn't, it is not read. Each property name must be unique in the file, if there is a
duplicate it is ignored and Intelli] IDEA complains by underlining the property with
red. For every language that needs to be supported, we need to create one property file
that contains the same property names, but different values, as the values represent
the translation of that value in each language. All files must have names that contain
a common suffix and end with the language name and the country, separated by
underscores, because these are the two elements needed to create a Locale instance. For
our JavaFX application, we have three files, which are depicted in Figure 10-10.

= using-javafx
build
out
src
= main
java
com.apress.bgn.ch10
& JavaFxDemo
5 module-info.java
| vohcresources |
.1 Resource Bundle 'global
L19lobal_en_GB.properties
\19lobal_fr_FR.properties
L1global_it_IT.properties
2 test
& build.gradle

Figure 10-10. Resource Bundle with three resource files

The suffix is global and this is our resource bundle name as well. This is made clear
by Intelli] IDEA, which figures out what our files are used for and depicts them in an
obvious way. The contents of the files is depicted in Table 10-1.

443

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

Table 10-1. Contents of Resource Files

Property Name Property value in

Property value in

Property value in

global_en_GB global_fr_FR global_it_IT
English English Anglais Inglese
French French Frangais Francese
[talian Italian Italien Italiano
Cat Cat Chat Gatto
Dog Dog Chien Cane
Parrot Parrot Chien Pappagallo
Mouse Mouse Souris Topo
Cow Cow Perroquet Mucca
Pig Pig Porc Maiale
WindowTitle JavaFX Demo Window! JavaFX Démo Fenétre! JavaFX Dimostratione Finestra!
Byebye Bye bye! Bye bye! Ciao!
ChoosePet Choose Pet: Choisissez la langue: Scegli la lingua:

ChooseLanguage Choose Language:

Choisir un animal de

compagnie:

Scegli un animale domestico

Intelli] IDEA can help you edit resource bundle files easily and makes sure you are
not missing any keys from any of them by providing a special view for them. When you
open a resource file, in the bottom left corner you should see two tabs. One is called Text
and when clicked, it allows you to edit a properties file as a normal text file. The other
one is called Resource Bundle and when clicked, it opens a special view that has all the
property names in the resource files and views from all resource files containing values
for property names selected. Figure 10-11 shows this view and the values for the Choose

Language property.

444

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

11| global_en_GB.properties

+ & B % > global_en_GB.properties (English/United Kingdom)

I 1: Project

,19lobal
English
French
Italian
Cat

Dog
Parrot Choisissez la langue:

Choose Language:

@ Learn

global_fr_FR.properties (French/France)

Mouse

Cow

Pig

WindowTitle global_it_IT.properties (ltalian/Italy)
Byebye
ChoosePet

ChooselLanguage

Scegli la lingua:

Figure 10-11. Resource Bundle Intelli] IDEA editor

The property names can contain special characters as underscore and dots to
separate parts of them. In this book example the property names are simple, because we
only have so little of them. In bigger applications, property names usually contain a prefix
that is relevant to their purpose, for example if the property value is a title the name is
prefixed with title. For example, the property names in our files could be changed to
the following:

English --> label.lang.english
French --> label.lang.french
Italian --> label.lang.italian
Cat --> label.pet.cat

Dog --> label.pet.dog

Parrot --> label.pet.parrot
Mouse --> label.pet.mouse

Cow --> label.pet.cow

Pig --> label.pet.pig
WindowTitle --> title.window
Byebye --> label.button.byebye
ChoosePet --> label.choose.pet
Chooselanguage --> label.choose.language

445

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

Now that we have covered how the resource files should be written, let’s see how
they are used. To create a ResourceBundle instance, we first need a locale. Applications
have a default locale that can be obtained by calling Locale.getDefault(), and a
ResourceBundle instance can be obtained by using a bundle name and a locale instance,
as depicted in the following code snippet.

Locale locale = Locale.getDefault();
ResourceBundle labels = ResourceBundle.getBundle("global", locale);

When a valid ResourceBundle is obtained, it can replace all hard-coded String
instances with calls to return text values from the resource file matching the selected
locale. So, every time we need to set a label for a node, instead of using the actual text, we
use a call to resourceBundle.getString("[property name]") to get the localized text.

When a JavaFX window is reloaded, all its nodes are re-created. To influence how,
we need to add a couple of static properties to keep the selected locale set. So, for the
application that we’ve build so far, after internationalizing it, the code looks like the one
in the next listing.

package com.apress.bgn.ch10;
import javafx.*;

import java.io.File;

import java.net.URL;

import java.net.URLClassloader;

import java.util.locale;

import java.util.ResourceBundle;

public class JavaFxDemo extends Application {

private static final String BUNDLE_LOCATION =
"chapter10/using-javafx/src/main/resources”;

private static ResourceBundle resourceBundle = null;
private static Locale locale = new Locale("en", "GB");
private static int selectedlang = 0;

public static void main(String... args) {
Application.launch(args);

446

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

@verride

public void start(Stage primaryStage) throws Exception {
loadlLocale(locale);
primaryStage.setTitle(resourceBundle.getString("WindowTitle"));

String[] data = {resourceBundle.getString("Cat"),

resourceBundle.getString("Dog"),
resourceBundle.getString("Parrot"),
resourceBundle.getString("Mouse"),
resourceBundle.getString("Cow"),
resourceBundle.getString("Pig")};

BorderPane borderPane = new BorderPane();

//Top
final ComboBox<String> comboBox
comboBox.getItems().addAll(data);

new ComboBox<>();

final ComboBox<String> langlList = new ComboBox<>();

String[] languages = {
resourceBundle.getString("English"),

resourceBundle.getString("French"),
resourceBundle.getString("Italian")};

langlList.getItems().addA1l(languages);
langlList.getSelectionModel().select(selectedlLang);

GridPane gridPane = new GridPane();
gridPane.setHgap(10);
gridPane.setVgap(10);

Label labellang = new Label(resourceBundle.getString("Choose
Language"));

gridPane.add(labellang, 0, 0);

gridPane.add(langlList, 1, 0);

Label labelPet = new Label(resourceBundle.getString("ChoosePet"));
gridPane.add(labelPet, 0, 1);
gridPane.add(comboBox, 1, 1);

447

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

borderPane.setTop(gridPane);

//Center

final TextArea textArea = new TextArea();
textArea.setEditable(false);
borderPane.setCenter(textArea);

comboBox.valueProperty().addListener((observable, oldValue, newValue)
-> textArea.appendText(newValue + "\n"));

langlist.valueProperty().addListener((observable, oldValue, newValue)
- {
int idx = langlList.getSelectionModel().getSelectedIndex();
selectedLang = idx;
if (idx == 0) {
//locale = Locale.getDefault();
new Locale("en", "GB");
} else if (idx == 1) {
locale = new Locale("fr", "FR");
} else {
locale = new Locale("it", "IT");

}

primaryStage.close();
Platform.runLater(() -> {
try {
new JavaFxDemo().start(new Stage());
} catch (Exception e) {
System.err.println("Could not reload application!");

}
};
};

HBox box = new HBox();

box.setPadding(new Insets(10, 12, 10, 12));
box.setSpacing(10);
box.setAlignment(Pos.BASELINE RIGHT);

448

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

box.setStyle("-fx-background-color: #85929e;");

Button exitButton = new Button();
exitButton.setText(resourceBundle.getString("Byebye"));
exitButton.setOnAction(event -> Platform.exit());
box.getChildren().add(exitButton);
borderPane.setBottom(box);

//Bottom

StackPane root = new StackPane();
root.getChildren().add(borderPane);
primaryStage.setScene(new Scene(root, 500, 500));
primaryStage.show();

}

private void loadlLocale(Locale locale) throws Exception {
File file = new File(BUNDLE LOCATION);

URL[] url = {file.toURI().toURL()};
ClassLoader loader = new URLClasslLoader(url);

resourceBundle = ResourceBundle.getBundle("global", locale, loader);

You might be wondering why we used another way of loading the resource bundle
and why the full relative path to the bundle location was used. Well, if we want the
application to be runnable from the Intelli] Interface, we have to provide a path relative
to the execution context of the application. When the application is built and packed in a
runnable Java archive, the resource files are part of it and in the classpath. But we run the
application by executing the main() method in an Java IDE, the classpath is relative to
the actual location of the project.

The following code snippet, restarts the scene by closing the Stage, then
instantiating a JavaFxDemo object and calling start(..). This means the whole
hierarchical node structure is re-created; the only state that is kept is the one that was
defined in static objects. This is needed for the locale setting, because the start(..)
method execution now starts with a call to loadLocale(locale), which selects the locale
of the application and loads the ResourceBundle so that, all nodes can be labeled with
texts returned by it.

449

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

primaryStage.close();
Platform.runLater(() -> {
try {
new JavaFxDemo().start(new Stage());
} catch (Exception e) {
System.err.println("Could not reload application!");

};

The application we have built until now and played with is a simple one. If you ever
need to build interfaces that are more complex and internationalization is needed, this
means more than translations are configured. You might need to have files with different
number and date formats, or multiple resource bundles. Internationalization is a big
topic and an important one, as rarely an application is built nowadays to be used in a
single region. But for a Java beginner, just knowing what the supporting classes are and
how they can be used is a very good starting point.

Build a Web Application

Here we are. Things are getting serious. We are building a web application. A web
application is an application that runs on a server and can be accessed using a browser.
Until recently most Java applications needed web servers like Apache Tomcat, Glassfish,
or Enterprise, and servers like JBoss (currently known as WildFly) or TomEE to be hosted
on, so they could be accessed. You would write the web application, with the classes

and HTML or JSP files, pack it in a WAR (Web ARchive) or an EAR (Enterprise ARchive),
deploy it to a server, and start the server. The server would provide the context of the
application and map requests to classes that would provide the answer to be served as
responses. Assuming the application would be deployed on a Tomcat server, Figure 10-12
shows an abstract schema of the deployed application functionality.

450

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

Apache Tomcat

‘\.\ Server
Request: \ i
GET D
PUT >
POST &
DELETE y
: HTML Pages &
Browser | ;
(client) \/// L:irm/
Servlets &
JSP Pages \
Response 7 /| —

“""—’ Database
Application

Vv

Figure 10-12. Web application deployed on an Apache Tomcat server

Requests to a web application can come from other clients than browsers, but
because this section covers web applications, we’ll assume all requests to our application
come from a browser. Let me explain the Internet a little first.

The Internet is an information system made up of a lot of computers linked together.
Some computers host application servers that provide access to applications, some
computers access these applications and some do both. The communication between
these computers is done over a network through a list of protocols: HTTP, FTP, SMTP,
POP, and so forth. The most popular protocol is HTTP, which stands for Hypertext
Transfer Protocol and it is an asymmetric request-response client-server protocol, this
means that the client makes a request to the server and then the server sends a response.
Subsequent requests have no knowledge of one another and they do not share any state,
thus they are stateless. HTTP requests can be of different types, being categorized by the
action they require the application on the server to perform, but there are four types that
are more commonly used by developers (the ones listed in Figure 10-12 in the request
arrow). won’t go into the details of request components because it is not really related
to Java; I'll cover enough information to understand how a web application works. The
following list contains the four most common request types and the responses a server
generates for them:

451

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

o GET: Whenever a user enters a URL in the browser (e.g., http://my-
site.com/index.html), the browser transforms the address into a
request message and sends it to the web server. What the browser
does can be easily viewed by opening the debugger view in Firefox.
Click the Network tab, and access www.google.com. Figure 10-13
shows the Firefox debugger view showing the URL being requested
and the contents of the Request message.

s:/fwww.google.com

Google

= c

iy Style sheet coud not be loades.

[3 (O nspector [Console [Debugger {) StyleEditor @ Performance {h Memory = Network & Storage (@ Adblack Plus
L} Il NI HTML €SS S
Status Method File Domain m Type Headers Cookies Params Response Timings Stack Trace
284] POST gen_204%=webhpltsaftda.. @ wwwgooglecom beacon e Request URL: https:/fwww.google. con/
(204] Requost method: GET
POST jer_204%atyp=coidei=tnds.. Www.google.com beacon ntm
e " = ety Remote oddress: 74.125.00.180:443
Fad ! S SANCOO00' XIeS | rocsman s status code: B (P Editana Resend Raw neaders
m GET poogielogo_color_272x82dp... I www.googiecom Imageset png Version: HTTP/2.8
(200 GET googlelogo_color 120xé4dp... @ www.googlecom img png Filter

Figure 10-13. Network debugger view in Firefox

In the right part of the image, you can see the URL being requested, the type of
request, also called a request method, which is GET in this case, and the remote
address of the server where the request was sent to. There is also a Raw headers
button that opens a view depicting the contents of the request and response as text.
GET requests are used to retrieve something from the server, in this example, a web
page. If the web page can be found, the response is sent with the page to be displayed
by the browser and other attributes, such a status code, to communicate that all went
fine. There is a list of HTTP status codes, the most important one is the 200 code,
which means all went OK. In Figure 10-13, you can see that to display the page a lot
of additional requests are done, after the initial request is replied, and all subsequent
requests are successful, because the status returned by the server is put in the first

column in the table and it’s always 200.

452

http://my-site.com/index.html
http://my-site.com/index.html
http://www.google.com

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

e PUT: This type of request is used when data is sent to the server for
storage. In enterprise applications, a PUT requests is interpreted as
arequest to update an existing object, and the request contains the
updated version of the object and means to identify it.

o POST: This type of request is used when the server needs to be
instructed to save data for storage as well. The difference from PUT
request is that this data does not exist on the server yet. In enterprise
applications a POST request is used to send credentials so the user
can be authenticated, or to send data that creates a new object. When
a POST request sends credentials the response status code is 200
when the user is authenticated and 401(Unauthorized) when the user
credentials are not good, when a POST request sends data to be saved,
the 201 status code is returned if the object was created.

o DELETE: This type of request is used when the server is asked to
delete data. The response code is 200 when the deleting the data was
successful, and any other error code related to the cause why it did
not, otherwise.

There are a few other HTTP methods that are used in more complex applications.
If you are curious about request methods, status codes, and HTTP basics, I
confidently recommend the tutorial at www.ntu.edu.sg/home/ehchua/programming/
webprogramming/http_basics.html. Now let’s get back to writing Java web applications.
Until a while ago, we needed a server to host a web application but this is no
longer the case. As databases were replaced for testing purposes and applications with
minimum functionality with embedded databases, the same happened to web servers.
If you want to quickly write a simple web application you have now the option of using
an embedded server, like Jetty or Tomcat (the embedded version). For this section of the
chapter, we'll use an embedded Tomcat server and we'll create a small web application
that displays a simple HTML page. The code is depicted in the next listing.

package com.apress.bgn.ch10;

import org.apache.catalina.Context;
import org.apache.catalina.lifecycleException;
import org.apache.catalina.startup.Tomcat;

import java.io.File;

453

http://www.ntu.edu.sg/home/ehchua/programming/webprogramming/http_basics.html
http://www.ntu.edu.sg/home/ehchua/programming/webprogramming/http_basics.html

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

public class WebDemo {
public static void main(String... args) throws LifecycleException {
Tomcat tomcat = new Tomcat();
tomcat.setBaseDir("chapter10/web-app/out");
tomcat.setPort(8080);

String contextPath = "/demo";
String docBase = new File(".").getAbsolutePath();

Context context = tomcat.addContext(contextPath, docBase);

SampleServlet servlet = new SampleServlet();

tomcat.addServlet(contextPath, servlet.getServletName(), servlet);

context.addServletMapping(servlet.getUrlPattern(),
servlet.getServletName());

tomcat.start();
tomcat.getServer().await();

If you think it is simple, it really is. All we have to do to start an embedded server is
to create a Tomcat instance and select the port we want to expose it on(in this case 8080)
and specify a location for the Tomcat temp files. As we are running our main(..) method
from Intelli], the context of the application is relative to the project directory, so the
base directory for Tomcat is set as the out directory where Intelli] IDEA stores compiled
classes and other temporary files for this project. A Java web application needs a context
path. The context path value is a part of the URL to access the application. An URL is
made up of four parts.

o protocol: The application-level protocol used by client and server to
communicate, (e.g., http, https, ftp, etc.).

o hostname: The DNS domain name (e.g., www.google.com) or IP
address (e.g., 192.168.0.255) or any alias recognized in a network. For
example when an application is accessed from the same computer
the server is installed on either 127.0.0.1 can be used or localhost.

454

http://www.google.com

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

o port: The TCP port number the server is listening for incoming
requests from clients. For web applications it usually is 8080, but
most URLs do not contain this port as there are routing mechanisms
in place to hide it.

e path and filename: The name and location of the resource, under
the server document base directory. Users usually request to view
specific pages hosted on servers, which is why URLs look like this:
https://docs.oracle.com/index.html. But a very used practice is
to hide the paths and file names by using internal mappings (called
URL redirection) because of security reasons.

So where does the context path value come in? Well, when we have an embedded
server declared like in the previous code sample, any files that are hosted by it can
be accessed by using the http://localhost:8080/, but because a server can host
more than one application, they must be a way to separate them, right? Here is where
the context path value comes in handy. Because by setting the context path to /demo,
the WebDemo application and the resources it provides to the users can be accessed at
http://localhost:8080/demo/.

Java Web Applications are dynamic, the pages are generated from Java code using
Servlets and JSP(Java Server Pages) pages. Because of that, Java Web Applications are
not running on a server but inside a web container on the server. The web container
provides a Java runtime environment for Java Web applications. Apache Tomcat is
such a container running in the JVM; it supports execution of servlets and JSP pages. A
servlet is a Java class that is a subclass of javax.servlet.http.HttpServlet. Instances
of this type answer HTTP Requests within a web container. A JSP page is a file with
. jsp extension that contains HTML and Java code. A JSP page gets compiled into a
servlet by the web container the first time the page is accessed. In essence the servlet is
the core element of a Java Web application. Also, the server must know that the servlet
exists and how to identify it, this where the call tomcat.addServlet(contextPath,
servlet.getServletName(), servlet); comesin, it basically says: add the servlet
with name servlet.getServletName() to the application context with the contextPath
value context path. Then, to associate an URL pattern to the servlet, the context.
addServletMapping(servlet.getUrlPattern(), servlet.getServletName()); is
called.

455

https://docs.oracle.com/index.html

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

When a Java Web Application is running, all its servlets and JSP are running into

its context, but they have to be added into the context in the code and mapped to an
URL pattern. The requests URL that match that URL pattern will access that servlet. In
the previous code sample, you can see that an instance of SampleServlet is created.

Itis a custom class extending javax.servlet.http.HttpServlet that overrides the

doGet (.

.) method to return a response to the client for a GET request with http://

localhost:8080/demo/. The code of this class is depicted next.

package com.apress.bgn.ch10;

import
import
import
import
import
import
import

public

javax.servlet.http.HttpServlet;
javax.servlet.http.HttpServletRequest;
javax.servlet.http.HttpServletResponse;
java.io.BufferedReader;
java.io.FileReader;
java.io.IOException;
java.io.PrintWriter;

class SampleServlet extends HttpServlet {

private final String servletName = "sampleServlet";
private final String urlPattern = "/";

@verride

protected void doGet(HttpServletRequest request, HttpServletResponse
response)

456

throws IOException {
PrintWriter writer = response.getWriter();
try (BufferedReader reader = new BufferedReader(
new FileReader("chapter10/web-app/src/main/resources/static/index.
html"))) {
String line = "";
while ((line = reader.readlLine()) != null) {
writer.println(line);

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

@verride
public String getServletName() {
return servletName;

}

public String getUrlPattern() { }
return urlPattern;

The urlPattern property was added to this class for practical reasons to keep
everything related to this servlet in one place. The same goes for servletName. If the
intention was to instantiate this class multiple times to create multiple servlets, these
two properties should be taken outside of it. Inside the doGet (. .) method we only read
the contents of the index.html file and we write them in the response object using the
response PrintWriter.

As you can see, the doGet (. .) method receives as arguments two objects: the
HttpServletRequest instance is read and all contents of the request sent from the
client can be accessed using appropriate methods, and the HttpServletResponse
instance, that is used to add information to the response. In the previous code sample,
we are just writing HTML code read from another file, but we can set the status also by
calling response. setStatus (HttpServletResponse.SC OK); Aside from the doGet (. .)
method there are do*(. .) methods matching each HTTP method that declare the same
type of parameters.

Another way to write the class (starting with Servlet 3.0) is depicted in the following
code snippet:

package com.apress.bgn.ch10;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.io.PrintWriter;

457

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

@WebServlet(
name = "sampleServlet",
urlPatterns = {"/"}
)
public class IndexServlet extends HttpServlet {
@verride
protected void doGet(HttpServletRequest request, HttpServletResponse
response)

throws IOException {
PrintWriter writer = response.getWriter();
response.setStatus(HttpServletResponse.SC 0OK);
try (BufferedReader reader = new BufferedReader(
new FileReader("chapter10/web-app/src/main/resources/static/index.
html"))) {
String line = "";
while ((line = reader.readlLine()) != null) {
writer.println(line);

}
writer.flush();

writer.close();

Using the @WebServlet annotation, we no longer need to have properties where we
store the servlet name and URL pattern, but the Tomcat context needs to be modified
a little to tell it to scan for classes annotated with @WebServlet. So, instantiating the
servlet explicitly is no longer necessary. Neither is calling tomcat.addServlet(..)
and context.addServletMapping(..), because adding the servlet to the application
context and mapping it is done automatically using the information provided by the
@WebServlet annotation. But we do have to define where the compiled servlet classes
are by declaring an WebResourceSet instance and adding it to the context resources.

import org.apache.catalina.Context;
import org.apache.catalina.WebResourceRoot;
import org.apache.catalina.startup.Tomcat;

458

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

import org.apache.catalina.webresources.DirResourceSet;
import org.apache.catalina.webresources.StandardRoot;

import java.io.File;
public class WebDemo {

public static void main(String... args) throws Exception {
Tomcat tomcat = new Tomcat();
tomcat.setBaseDir("chapter10/web-app/out");
tomcat.setPort(8080);

String contextPath = "/demo";
String docBase = new File(".").getAbsolutePath();

Context context = tomcat.addContext(contextPath, docBase);

File webInfClasses = new File(root.getAbsolutePath(), "production/
classes");
WebResourceRoot resources = new StandardRoot(context);

WebResourceSet resourceSet;
if (webInfClasses.exists()) {
resourceSet = new DirResourceSet(resources,
"/WEB-INF/classes", webInfClasses.getAbsolutePath(), "/");
System.out.println("loading WEB-INF resources from as '"
+ webInfClasses.getAbsolutePath() + "'");
} else {
resourceSet = new EmptyResourceSet(resources);
}
resources.addPreResources(resourceSet);
context.setResources(resources);

tomcat.start();
tomcat.getServer().await();

459

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

So this is how we handle servlets, but how do we handle JSP pages using an
embedded server? First we have to create a directory where the JSP pages are. So the
structure of our project must change as depicted in Figure 10-14.

' build
out
classes
resources
dynamic
g index.jsp
static
4 index.html
@ log4j2.xml
work
src
= main
java
com.apress.bgn.ch10
€ LocationUtility
€ SampleServlet
& WebDemo
5 module-info.java
- resources
ssp index.jsp
static
4 index.html
e log4j2.xml
. test
& build.gradle
= build.gradle-independent
lsa README.adoc

Figure 10-14. Web application structure change

460

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

Asyou can see, the resource/dynamic directory was added to place the JSP pages in.
As our application is getting complicated it is time to clean it up a little and make paths
relative to the execution path of the application, which is the out directory. So, we
introduce the following class.

package com.apress.bgn.ch10;
import java.io.File;
public class LocationUtility {

public static File getRootFolder() throws Exception {

String executionPath = WebDemo.class.getProtectionDomain()
.getCodeSource().getlLocation().toURI().getPath().
replaceAl1("\\\\", "/");

int lastIndexOf = executionPath.lastIndexOf("/production/");

return lastIndexOf < 0 ? new File("") :

new File(executionPath.substring(o, lastIndexOf));

We now know that when Intelli] IDEA compiles Gradle applications it creates
under the out directory a directory named production containing compiled Java
classes and resources, properly organized each in their own directory. So that is why,
the root directory of the execution of our application is computed relative to that
directory. As we've added an index.jsp page, we have to add a different URL pattern for
SampleServlet and since we also added relative paths, the class code changes a little.

package com.apress.bgn.ch10;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.io.PrintWriter;

461

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

@WebServlet(
name = "sampleServlet",
urlPatterns = {"/sample"}
)
public class SampleServlet extends HttpServlet {
@verride
protected void doGet(HttpServletRequest request, HttpServletResponse
response)

throws IOException {
PrintWriter writer = response.getWriter();
response.setStatus(HttpServletResponse.SC 0OK);
try (BufferedReader reader = new BufferedReader(
new FileReader(LocationUtility.getRootFolder()
+ "/production/resources/static/index.html"))) {

String line = "";
while ((line = reader.readlLine()) != null) {
writer.println(line);
}
} catch (Exception e) {
writer.println(

"<html><head><title>Web Application Demo [ERROR] </title></head>" +
"<body><p style=\"color:#C70039\">Something went wrong." +
"The page is not available. Error: " + e.getMessage()

+ "</p></body></html>");
e.printStackTrace();
}
writer.flush();
writer.close();

And since we might get the path to index.html wrong, we made sure to display a
proper message in the page. Next is to create a JSP page. There are two ways of writing
JSP pages. JSP scriptlets are the simplest ones to use. They are pieces of Java code
embedded in HTML code using directive tags. There are three type of directive tags.

462

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

o <J@ page ... %> directive used to provide instructions to the
container. Instructions declared using this directive belong to the
current page and can be used anywhere in the page. Such a directive
can import Java types or define page properties; for example,

<%@ page import="java.util.Date" %>
<%@ page language="java" contentType="text/html; charset=US-ASCII"
pageEncoding="US-ASCII" %>

e <%@ include ... %> directive includes a file during translation
phase. Thus the current JSP file where this directive is used, is a
composition of its content and the content of the file that is declared
using this directive.

<%@ include file = "footer.jsp" >

o <%@ taglib ... %> directive declares a tag library with elements
that are used in the JSP page. This directive is important because it
imports a library with custom tags and element that writes the JSP
page. These tags provide dynamic functionality without the need for
scriptlets.

The index.jsp page that we are using in this application is quite simple.

<%@ page import="java.util.Date" %>

<%@ page language="java" contentType="text/html; charset=US-ASCII"
pageEncoding="US-ASCII" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

<html>
<head><title>Web Application Demo JSP Page</title></head>
<body bgcolor=black>
<p style="color:#ffd200"> Today is <%= new Date() %> </p>
</body>

</html>

The page displays today’s date, and this is done by calling new Date(). We are using
Java code in what it looks like an HTML page. Because those directives are in there at the

463

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

top of the page and the extension is . jsp, the container knows this file must be compiled
into a servlet. The default page a web application opens with when its root domain is
accessed, if nothing was mapped to the default URL pattern "/" is a file named index.
html or index.htm or index.jsp in this case. So, aside from adding the file named
index. jsp in the proper directory and then making sure the container can find the
said application directory, there is nothing more to do so that when we access http://
localhost:8080/demo/ our page is displayed.

So let’s see how the WebDemo class changes to make sure the index. jsp file is found
and displayed properly.

package com.apress.bgn.ch10;

import org.apache.catalina.WebResourceRoot;

import org.apache.catalina.WebResourceSet;

import org.apache.catalina.core.StandardContext;

import org.apache.catalina.startup.Tomcat;

import org.apache.catalina.webresources.DirResourceSet;
import org.apache.catalina.webresources.EmptyResourceSet;
import org.apache.catalina.webresources.StandardRoot;

import java.io.File;
import java.nio.file.Files;
import static com.apress.bgn.ch10.LocationUtility.getRootFolder;

public class WebDemo {
public static void main(String... args) throws Exception {
File root = getRootFolder();
Tomcat tomcat = new Tomcat();
tomcat.setPort(8080);
tomcat.setBaseDir(root.getAbsolutePath());

File webAppFolder = new File(root.getAbsolutePath(),
"production/resources/dynamic");
if (!'webAppFolder.exists()) {
System.err.println("Could not find JSP pages directory!");

}
StandardContext context = (StandardContext) tomcat.

addWebapp("/demo”, webAppFolder.getAbsolutePath());

464

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE
context.setParentClassLoader(WebDemo.class.getClassLoader());

File webInfClasses = new File(root.getAbsolutePath(), "production/
classes");
WebResourceRoot resources = new StandardRoot(context);

WebResourceSet resourceSet;
if (webInfClasses.exists()) {
resourceSet = new DirResourceSet(resources, "/WEB-INF/classes",
webInfClasses.getAbsolutePath(), "/");
} else {
resourceSet = new EmptyResourceSet(resources);
}
resources.addPreResources(resourceSet);
context.setResources(resources);

tomcat.start();
tomcat.getServer().await();

So now when we open http://localhost:8080/demo/ URL in the browser, you

should see a simple message like the following.

Today is Mon Aug 20 01:41:29 BST 2018

Of course, the date is the one on your system.

? As an exercise for you, imagine how the Java servlet class would look like if
you had to write it.

Since taglibs were mentioned, let’s talk a little about them. The most basic tag library

is the JSTL, which stands for JSP Standard Tag Library. Other more evolved tag libraries

are provided by JSF (JavaServerFaces), Thymeleaf, or Spring. Tags defined in this library

can be used to write JSP pages that change behavior. Depending on request attributes,

they can be used to iterate, to test values, and for internationalization and formatting.

465

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

Based on the JSTL functions provided, the tags are grouped into five categories. They
can be used in a JSP page only after specifying the appropriate directives. Next, the five
directives are listed with the overall topic the tags cover.

o <%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %> JSTL Core tags provide support for displaying values,
iteration, conditional logic, catch exceptions, URL, and forward or
redirect response.

o <@ taglib uri="http://java.sun.com/jsp/jstl/fmt"
prefix="fmt" %> JSTL Formatting tags are provided for formatting
of numbers, dates, and i18n support through locales and resource
bundles.

o <%@ taglib uri="http://java.sun.com/jsp/jstl/sql"
prefix="sql" %> JSTL SQL tags provide support for interaction with
relational databases, but never do this, never use SQL in a web page
because it is very easily hackable (look up SQL Injection on Google).

o <@ taglib uri="http://java.sun.com/jsp/jstl/xml" prefix="x"
%> JSTL XML tags provide support for handling XML documents,
parsing, transformations and XPath expressions evaluation.

o <@ taglib uri="http://java.sun.com/jsp/jstl/functions”
prefix="fn" %> JSTL Function tags provide a number of functions
that can be used to perform common operations such as text
manipulations.

Now that we know the basic tag categories, which ones do you think we need to use
to redesign our index. jsp page? If you thought about FMT and Core, you are right. Also,
JSP pages that use taglibs are always backed up by a servlet that sets the proper attributes
on the request that is used within the JSP page. So, let’'s modify the index. jsp page, as
depicted next.

<%@ page language="java" contentType="text/html;
charset=US-ASCII" pageEncoding="US-ASCII"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

466

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

<html>

<head>

<title>Web Application Demo JSP Page</title>

</head>

<body bgcolor=black>

<fmt:formatDate value="${requestScope.today}"
pattern="dd/MM/yyyy" var="todayFormatted"/>

<p style="color:#ffd200"> Today is <c:out value="${todayFormatted}" />
</p>

</body>
</html>

And while we are at it, let’s rename it to make it obvious what it is used for, let’s call
itdate.jsp and write a servlet class named DateServlet to add the today attribute to
the request, which is formatted by the <fmt:formatDate> tag. The result is saved into the
todayFormatted variable, which is later printed by the <c:out> tag.

package com.apress.bgn.ch10;

import javax.servlet.RequestDispatcher;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

import java.util.Date;

@WebServlet(
name = "dateServlet",
urlPatterns = {"/"}

)
public class DateServlet extends HttpServlet {

467

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

@verride
protected void doGet(HttpServletRequest request, HttpServletResponse
response)
throws IOException, ServletException {
System.out.println(" ->>> Getting date ");
request.setAttribute("today", new Date());
RequestDispatcher rd = getServletContext().getRequestDispatcher
("/date.jsp");
rd.forward(request, response);

This is all. Now, we restart the application and the first page now displays: "Today
is 20/08/2018", You will obviously see the date on your system when the code is run on
your machine.

If you think writing Java Web applications is cumbersome you are right. Pure Java
is tedious for such a task. Professional Java Web applications are usually written by
using frameworks that make the job of creating pages and linking them to the backend
easily. Even more, nowadays the tendency is to create interfaces in JavaScript(also using
advanced CSS4, now many UI Designs can also be done 100% in CSS3 or CSS4) and
communicate to a Java backend application hosted on an enterprise server using Web
Service calls, usually REST. Anyway, look it up if you are curious, the subject is vast, but
frameworks such as Spring make it easy to set up your environment and start developing.

Summary

This chapter covered important development tools and techniques, the classes in JDK
that provide support, and important Java libraries that could make your development job
more practical and pleasant. The JDK has never shined when it comes to GUI support,
but JavaFX is an evolution from AWT and Swing, and it just might have a future. The
following is a complete list of the topics.

e how to write an interactive console application
o how to write an interactive application with a Swing interface

o the basics of JavaFX architecture

468

CHAPTER 10 MAKING YOUR APPLICATION INTERACTIVE

how to write an interactive application with a JavaFX interface
how to internationalize your application

how to write a web application using an embedded server
what a servlet is

what a JSP scriptlet is

how to use taglibs to write JSP pages

469

CHAPTER 11

Working with Files

One of the most important functions in software is information organizing and storage,
with the goal of using it and sharing it. Before computers were invented information
was written on paper and stored in organized cabinets where it could be retrieved
from manually. Software applications that run on computers do something similar.
Information is written in files, files are organized in directories and in even more
complex structures named databases. Java provides classes to read information from
files and databases and classes to write files and write information to databases. In
Chapter 9, a simple example using a Derby in-memory database was introduced to
show you how heavy dependencies like databases can be mocked to allow faster unit
testing. This chapter is not focused on using Java to perform database operations, but on
how Java can be used to manipulate files.

File Handlers

Before showing you how to read or write files, I need to show you how to access them
from the code, to check if they exist, to check their size and list their properties, and so
forth. Enough with the literature—let’s get cracking!

When working with files in Java, the most important class is the java.io.File class.
This class is an abstract representation of a file and directory pathname. Instances of this
class are called file handlers because they allow developers to handle files and directories
in the Java code using references of this type, instead of complete pathnames. A File
instance can be created by using different arguments.

The simplest way is to use the constructor that receives as an argument a String
value containing the absolute file pathname. In the following code sample, the
printStats(..) method prints file information. We use it a lot in this section, but the
code won'’t be depicted again.

471

© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_11

CHAPTER 11 WORKING WITH FILES
package com.apress.bgn.chii;

import org.slf4j.Logger;
import org.slf4j.lLoggerFactory;

import java.io.File;

public class Demo {
private static final Logger log = LoggerFactory.getlLogger(Demo.class);

public static void main(String... args) {
File file = new File("/Users/iulianacosmina/apress/vultures.txt");
printFileStats(file);

}

private static void printFileStats(File f) { if (f.exists()) {
log.info("File Details:");

log.info("Type : {}", f.isFile() ? "file" : "directory or symlink");
log.info("Location :{}", f.getAbsolutePath());

log.info("Parent :{}", f.getParent());

log.info("Name : {}", f.getName());

double kilobytes = f.length() / 1024; log.info("Size : {} ", kilobytes);

log.info("Is Hidden : {}", f.isHidden());
log.info("Is Readable? : {}", f.canRead());
log.info("Is Writable? : {}", f.canWrite());
}

}

In the previous code snippet, the file handler instance is created by providing the
absolute file pathname on my computer. If you want to run the code on your computer,
you must provide a pathname to a file on your computer. If you are using Windows, keep
in mind that the pathname contains the "\" character that is a special character in Java
and must be escaped by doubling it.

The printStats(..) method makes use of a lot of methods that can be called on a
file handler. The full list of methods that you can call is bigger. This list is in the official

472

CHAPTER 11 WORKING WITH FILES

API documentation https://docs.oracle.com/javase/10/docs/api/java/io/File.
html. All the file handler methods are explained in the following list at: https://docs.
oracle.com/javase/10/docs/api/java/io/File.html.

isFile() returns true if the pathname points to a file and false if
the pathname points to a directory or a symlink (a special type of file
with the purpose to link to another file, can be useful when you want
to shorten the pathname to a file and incredibly useful on Windows
where the pathname length limit is of 256 characters). In the previous
code sample, the method returns true, and the log prints:

[main] INFO com.apress.bgn.chi1i.Demo - Type : file

If we want to see if the method works for a directory, we delete the
file name from the pathname.

File file = new File("/Users/iulianacosmina/apress");
And then the log prints:

[main] INFO com.apress.bgn.ch11.Demo - Type : directory or
symlink

getAbsolutePath() returns the absolute pathname to a file or a
directory. When creating a file handler, the absolute pathname is not
always needed, but in case you need to use it later, or to make sure
the relative path was resolved correctly, this method is just what you
need. The following piece of code creates a file handler to a file in

the resources directory by using the path relative to the root project
directory (in our case, the java-for-absolute-beginners directory).

File d = new File("chapteri1/read-write-file/src/main/
resources/input/");

And now the getAbsolutePath() method prints the full pathname.

[main] INFO com.apress.bgn.chil.Demo - Location :/Users/

iulianacosmina/
java-for-absolute-beginners/chapterii/read-write-
file/src/main/resources/input/vultures.txt

473

https://docs.oracle.com/javase/10/docs/api/java/io/File.html
https://docs.oracle.com/javase/10/docs/api/java/io/File.html
https://docs.oracle.com/javase/10/docs/api/java/io/File.html
https://docs.oracle.com/javase/10/docs/api/java/io/File.html
https://docs.oracle.com/javase/10/docs/api/java/io/File.html

CHAPTER 11

474

WORKING WITH FILES

The Java File class is quite powerful; it can also be used to point to

a shared file on another computer. There is a special constructor for
this which receives an argument of type java.net.URI, where URI
stands for Uniform Resource Identifier. To test this constructor, select
a file on your computer, and open it in a browser, so you can get its
URI from the browser address bar.

try {
URI uri = new URI("file:///Users/iulianacosmina/

java-for-absolute-beginners/chapter11/"
+ "read-write-file/src/main/resources/input/vultures.
txt"); f = new File(uri);
printFileStats(f);
} catch (URISyntaxException use) {
log.error("Malformed URI, no file there", use);

}

Because the URI might have an incorrect prefix or not exactly
pointing to a file the URI constructor is declared to throw an
java.net.URISyntaxException, which is why in the code, you must
handle this as well. If an URI is used to create a file handler, the
getAbsolutePath() method returns the absolute pathname of

the file, on the computer and drive where the file is.

getParent () returns the absolute path to the directory containing the
file, because hierarchically, a file cannot have another file as a parent.
getName() returns the file name. The file name contains the extension

as the suffix after "." is called, indicates the type of file and what is
intended to be used for.

length() returns the length of the file in bytes. This method does
not work for directories, as directories can contain files restricted to
the user executing the program and exceptions might be thrown. So,
if you ever need the size of a directory, you have to write the code
yourself.

CHAPTER 11 WORKING WITH FILES

isHidden() returns true if the file is not visible to the current
user; otherwise, it returns else. On a macOS/Linux system, files
with names starting with ". " are hidden, so if we want to see that
method returning true we must create a handler to one of the
system configuration files, such as .bash_profile. So, calling the
printStats(..) on a file handler created using a pathname to a

hidden file results in an output similar to this:

[main] INFO com.apress.bgn.chil.Demo - File Details:
[main] INFO com.apress.bgn.chi1i.Demo - Type : file

[main] INFO com.apress.bgn.ch1i1i.Demo - Location :/Users/
iulianacosmina/.viminfo [main] INFO com.apress.bgn.chi1.
Demo - Parent :/Users/iulianacosmina

[main] INFO com.apress.bgn.chi1.Demo - Name : .viminfo
[main] INFO com.apress.bgn.chi1.Demo - Size : 13.0 [main]
INFO com.apress.bgn.chi1.Demo - Is Hidden : true

[main] INFO com.apress.bgn.chi1.Demo - Is Readable? : true
[main] INFO com.apress.bgn.chi1i.Demo - Is Writable? : true

canRead() and canWrite() can secure files from normal users. Both
methods return true when the use has the specific right on the file,
and are false otherwise.

File handlers can be created for pathnames pointing to directories, which means
there are available methods to call that are specific only to directories. The most
common thing to do with a directory is to list its contents. The 1ist() method returns a
String array, containing the names of the files (and directories) under this directory.
We can use a lambda expression to print the entries in the array.

Arrays.stream(d.list()).forEach(ff -> log.info("\t File Name : {}", ff));

But files names are not really useful in most cases, having a File array with file
handlers to each of them would be better. That is why the 1istFiles() method was
added in version 1.2.

Arrays.stream(d.listFiles()).forEach(ff ->
log.info("\t File Name : {}", ff.getName()));

475

CHAPTER 11 WORKING WITH FILES

And this method has more than one form, because it filters the files and returns file
handlers only for files matching a certain requirement when called with an instance of
FileFilter.

Arrays.stream(d.listFiles(new FileFilter() {
@verride
public boolean accept(File pathname) {
return pathname.getAbsolutePath().endsWith("yml")
|| pathname.getAbsolutePath().endsWith("properties");

}
})).forEach(ff -> log.info("\t YML/Properties file : {}", ff.getName()));

The previous code sample is written in expanded form to make it clear that you
should provide a concrete implementation for the accept (. .) method. Using lambda
expressions, the code can be simplified and made less prone to exceptions being thrown.

Arrays.stream(Objects.requireNonNull(
d.listFiles(pathname -> pathname.getAbsolutePath()
.endsWith("yml") || pathname.getAbsolutePath().endsWith("properties"))))
.forEach(ff -> log.info("\t YML/Properties file : {}", ff.getName()));

In the previous example, we implemented the accept(. .) to filter by extension,
but the filter can involve anything really. But, when the filter you need strictly involves
the file name, you can reduce the boilerplate by using the other version of the method,
which receives a FilenameFilter instance as argument.

Arrays.stream(d.listFiles(new FilenameFilter() {
@0verride
public boolean accept(File dir, String name) {
return name.contains("son");

}
})).forEach(ff -> log.info("\t Namesakes : {}", ff.getName()));

Aside from listing properties of a file, a file handler can also be used to create a file.
To create a file, the createNewFile() method must be called after creating a file handler
with a specific pathname.

476

CHAPTER 11 WORKING WITH FILES

File created = new File(
"chapteri1/read-write-file/src/main/resources/output/created.txt");
if (!created.exists()) {
try {
created.createNewFile();
} catch (IOException e) {
log.error("Could not create file.", e);

}

The exists() method returns true when the file hander is associated with a file, and
false otherwise. It tests if the file we are trying to create is already there. If the file exists,
the method has no effect. If the user does not have proper rights to create the file at the
specified pathname, a SecurityException is thrown. In certain cases, we might need to
create a file that needs only to be used during the execution of the program. This means
we either have to create the file and delete it explicitly, or we can create a temporary
file. Temporary files are created by calling createTempFile(prefix, suffix) and they
are created in the temporary directory defined for the operating system. The prefix
argument is of type String and the created file has the name starting with its value. The
suffix argument is of type String as well and it specifies an extension for the file. The
rest of the file name is generated by the operating system.

try {
File temp = File.createTempFile("java_bgn ", ".tmp");
log.info("File created.txt at: {}", temp.getAbsolutePath());
temp.deleteOnExit();

} catch (IOException e) {
log.error("Could not create temporary file.", e);

Files in the temporary directory of an operating system are periodically deleted
by the operating system, but if you want to make sure it is deleted, you can explicitly
call deleteOnExit() on the file handler for the temporary file. In the code sample, the
absolute path to the file is printed to show the exact location where the temporary file
was created and on a macOS system the full pathname looks very similar to this:

/var/folders/gg/nm_cb21x72q11z7xwwdh7tnc0000gn/T/java_
bgn_14652264510049064218.tmp

477

CHAPTER 11 WORKING WITH FILES

A file can also be renamed using a Java file handler, there is a method for that
called rename () that is called with a file handler argument, pointing to the location
and desired name that the file should have. The method returns true if the renaming
succeeded and false otherwise.

File file = new File(
"chapter11/read-write-file/src/main/resources/output/sample/created.txt");
File renamed = new File(
"chapter11/read-write-file/src/main/resources/output/sample/renamed.txt");

boolean result = file.renameTo(renamed);

log.info("Renaming succeeded? : {} ", result);

Most methods in the File class throw IOException when things do not go as
expected, because manipulating a file can fail because of a hardware problem, or an
operating system problem. Methods that require special rights for accessing a file throw
a SecurityException when things do not go as expected.

So, when writing Java applications that need to manipulate files, you must handle
those as well. And now that the bases for working with file handlers have been covered, it
is time for the next section.

Path Handlers

The java.nio.file.Path interface was introduced in Java 1.7 with the java.nio.file.
Files and java.nio.file.Paths utility classes to provide new and more practical
ways to work with files. They are part of the java.nio package; the word nio means
non-blocking input output. A Path instance may be used to locate a file in a file system,
thus represents a system dependent file path. Path instances are more practical than
File because they can provide methods to access components of a path, to combine
paths, and to compare paths.

Path instances cannot be directly created, because an interface cannot be
instantiated, but the interface provides static utility methods to create them, and so does
the class Paths. The simplest way to create a Path instance is to start with a file handler
and call Paths.get(fileURI).

package com.apress.bgn.ch11;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
478

CHAPTER 11 WORKING WITH FILES

import java.io.File;

import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Iterator;

public class PathDemo {
private static final Logger log = LoggerFactory.getlLogger(PathDemo.class);

public static void main(String... args) {

File file = new File(
"chapteri1/read-write-file/src/main/resources/input/vultures.txt");

Path path = Paths.get(file.toURI());

log.info(path.toString());

}

Starting with Java 11, Paths.get(file.toURI()) can be replaced with Path.
of(file.toURI()).

The other way to create a Path instance is to use the other form of the Paths.get(..)
which receives as arguments, multiple pieces of the path.

Path composedPath = Paths.get("/Users/iulianacosmina/apress/workspace”,
"java-for-absolute-beginners/chapterii/read-write-file/src/main/
resources/input”,

"vultures.txt");
log.info(composedPath.toString());

Both paths point to the same location, thus if compared with each other using the
compareTo(..) method (because Path extends interface Comparable<Path>), the result
returned is 0 (zero), which means the paths are equal.

log.info("Is the same path? : {} ", path.compareTo(composedPath) ==0 ?

yes" : "no");
// prints : INFO com.apress.bgn.chii.PathDemo - Is the same path? : yes
In the next code sample, a few Paths methods are called on the path instance.

log.info("Location :{}", path.toAbsolutePath());
log.info("Is Absolute? : {}", path.isAbsolute());
log.info("Parent :{}", path.getParent());

479

CHAPTER 11 WORKING WITH FILES

log.info("Root :{}", path.getRoot());
log.info("FileName : {}", path.getFileName());
log.info("FileSystem : {}", path.getFileSystem());

The list explains each method and its outcome:

o toAbsolutePath() returns a Path instance representing the absolute
path of this path. When called on the path instance created, as it is
already absolute, the method returns the path object the method is
called on. Also, calling path.isAbsolute()returns true.

o getParent() returns the parent Path instance. So, calling this
method on the path instance prints

INFO com.apress.bgn.ch11.PathDemo - Parent :/Users/
iulianacosmina/apress/workspace/java-for-absolute-beginners/
chapter11/read-write-file/src/main/resources/input

o getRoot() returns the root component of this path as a Path
instance. On a Linux or macOS system it prints "/", on Windows,
something like "C:\".

o getFileName() returns the name of the file or directory denoted by this
path as a Path instance, basically, the path is split by the system path
separator, and the most far away from the root element is returned.

o getFileSystem() returns the file system that created this object, for
macOS it is an instance of type

sun.nio.fs.MacOSXFileSystem

Another useful Path method is resolve(..) This method takes a String instance
that is a representation of a path and resolves it against the Path instance it is called
on. This means that path separators are added according to the operating system the
program runs on and a Path instance is returned.

Path chapterPath = Paths.get("/Users/iulianacosmina/apress/workspace",
"java-for-absolute-beginners/chapter11");

Path filePath = chapterPath.resolve(
"read-write-file/src/main/resources/input/vultures.txt");

log.info("Resolved Path :{}", filePath.toAbsolutePath());

480

CHAPTER 11 WORKING WITH FILES
The sample code prints the following:

INFO com.apress.bgn.chi1.PathDemo - Resolved Path : :/Users/iulianacosmina/
apress/ workspace/java-for-absolute-beginners/chapterii/read-write-file/
src/main/resources/input/vultures.txt

Using Path instances, writing code that manages files, or retrieves their properties
becomes easier to write in combination with Files utility methods. The following code
sample makes use of a few of these methods to print properties of a file, in the same way
we did using a File handler.

Path outputPath = FileSystems.getDefault()
.getPath("/Users/iulianacosmina/apress/workspace/" +
"java-for-absolute-beginners/chapterii/read-write-file/src/main/
resources/output/sample2");

try {

Files.createDirectory(outputPath);
log.info("Type: {}", Files.isDirectory(outputPath) ? "yes" : "no");

Path destPath = Paths.get(outputPath.toAbsolutePath().toString(),
"vultures.txt");

Files.copy(path, destPath);

double kilobytes = Files.size(destPath) / (double)1024;

log.info("Size : {} ", kilobytes);

Path newFilePath = Paths.get(outputPath.toAbsolutePath().toString(),
"vultures2.txt");

Files.createFile(newFilePath);

log.info("Type: {}", Files.isRegularFile(newFilePath) ? "yes" : "no");

log.info("Type: {}", Files.isSymbolicLink(newFilePath) ? "yes" : "no");

log.info("Is Hidden: {}", Files.isHidden(newFilePath) ? "yes" : "no");
log.info("Is Readable: {}", Files.isReadable(newFilePath) ? "yes" : "no");
log.info("Is Writable: {}", Files.isWritable(newFilePath) ? "yes" : "no");

Path copyFilePath = Paths.get("/Users/iulianacosmina/temp/",
"vultures3.txt");

Files.move(newFilePath, copyFilePath);

log.info("Exists? : {}", Files.exists(copyFilePath)? "yes": "no");
log.info("File moved to: {}", copyFilePath.toAbsolutePath());

481

CHAPTER 11 WORKING WITH FILES

Files.deleteIfExists(copyFilePath);

} catch (FileAlreadyExistsException e) {
log.error("Creation failed!", e);

} catch (IOException e) {
log.error("Something unexpected happened!”, e);

Asyou can see, the Files class provides a lot more functionality when working with
files. Also, more specialized exceptions(types that extend IOException) are thrown
depending on the operation, so the failure is obvious. For example,

createFile(...) throws a java.nio.file.FileAlreadyExistsException
if the file already exists, it does not return a Path instance associated with it.
createDirectory(..) has the same behavior and so does move(. .).

The delete(..) method that is not used here throws a java.nio.file.
NoSuchFileException if the file to be deleted does not exist. To avoid an exception being
thrown in the code sample, deleteIfExists(..) was used.

And the list of methods is even bigger, but since the size of this chapter is limited,
you can check it out yourself on the official Javadoc API at https://docs.oracle.com/
javase/10/docs/api/java/nio/file/Files.html.

Reading Files

Files are a succession of bits on a hard drive. A File handler does not provide methods
to read the content of a file, but a group of other classes can be used to do so. Depending
on what is needed to be done with the contents of a file, there is more than one way to
read file contents in Java. Actually, there are a lot of ways and this section covers the most

comimon.

Using Scanner to Read Files

The Scanner class was used to read input from the command line, but System. in can be
replaced with File and Scanner methods to read the file contents.

482

https://docs.oracle.com/javase/10/docs/api/java/nio/file/Files.html
https://docs.oracle.com/javase/10/docs/api/java/nio/file/Files.html

CHAPTER 11

package com.apress.bgn.chii;

import org.slf4j.Logger;

import org.slf4j.lLoggerFactory;

import java.
import java.
import java.

io.File;
io.IOException;
util.Scanner;

public class ReadingFilesDemo {

private

static final Logger log =

LoggerFactory.getLogger(ReadingFilesDemo.class);

public static void main(String... args) {
File file = new File(
"chapteril/read-write-file/src/main/resources/input/vultures.txt");

String content = "";
Scanner scanner;
try {

} catch

scanner = new Scanner(file);
while (scanner.hasNextLine()) {

content += scanner.nextLine() + "\n";
}
scanner.close();
log.info("Read with Scanner--> {}", content);
scanner.close();
(IOException e) {
log.info("Something went wrong! ", e);

A Path instance can be used instead.

WORKING WITH FILES

scanner = new Scanner(Paths.get(file.toURI()), StandardCharsets.UTF 8.name());

483

CHAPTER 11 WORKING WITH FILES

Using Files Utility Methods to Read Files

Another way to read a file, when its size can be approximated and thus it would not be a
problem storing its contents into a String object (there is enough memory) is to use the
appropriate method of the Files class.

try {
content = new String(Files.readAllBytes(Paths.get(file.toURI())));

log.info("Read with Files.readAllBytes --> {}", content);
} catch (IOException e) {
log.info("Something went wrong! ", e);

The advantage of using Files.readAl1Bytes(..) is that no loop is needed and we
do not have to construct the String value line by line, because this method reads all
the bytes in the files that can be given as an argument to the String constructor. The
disadvantage is that no Charset is used, so the text value might not be the one we expect.
But there is a way to overcome this; by calling Files.readAllLines(..). It returns the
file content as a list of String values, and has two forms, one of them declaring a Charset
as a parameter.

try {
List<String> lyriclist = Files.readAlllLines(Paths.get(file.toURI()),

StandardCharsets.UTF_8);
lyriclist.forEach(System.out::println);
} catch (IOException e) {
log.info("Something went wrong! ", e);

But what if we do not need a List<String>, but the one String instance? Well, in
Java 11 there’s a method for that and is called readString.

try {
content = Files.readString(Paths.get(file.toURI()), StandardCharsets.UTF_8)

log.info("Read with Files.readAllBytes --> {}", content);
} catch (IOException e) {
log.info("Something went wrong! ", e);

484

CHAPTER 11 WORKING WITH FILES

Using Readers to Read Files

Before the fancy methods in the Files class, there were other ways, and you might
find yourself in the position of using them, when you are not really interested saving
everything you read from a file. Let’s start with a contraption code that you would write
up to Java 1.6 to read a file line by line.

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;

BufferedReader reader = null;
try {
reader = new BufferedReader(new FileReader(
new File("chapteril/read-write-file/src/main/resources/input/vultures.
txt")));
StringBuilder sb = new StringBuilder();
String line;
while ((line = reader.readlLine()) != null) {
if(!1line.contains("0oh")) {
sb.append(line).append("\n");
}

log.info("Read with BufferedReader --> {}", sb.toString());
} catch (Exception e) {
log.info("Something went wrong! ", e);
} finally {
if(reader != null) {
try {
reader.close();
} catch (IOException e1) {
el.printStackTrace();

485

CHAPTER 11 WORKING WITH FILES

Whoa, what is that, right? Before Java 1.7 if you wanted to read a file line by line, this
is the code you had to write. You had to create a File handler. Then you needed to wrap
the file handler into a FileReader. This type of instance could do the job of reading, but
only in chunks of char[], which is not very useful when you need the actual text. So,
this instance needs to be wrapped into an instance of BufferedReader that provides this
functionality by reading the characters in an internal buffer. So, the way it works, reader.
readLine() is called until there is nothing more to read—the end of the file was reached
and them we need to call reader.close(); otherwise, a lock might be kept on the file
and it becomes unreadable until a restart.

In Java 1.7, a lot of things made to reduce the boilerplate needed to manage files and
file contents were introduced. One of those things was that all classes used to access
file contents and that could keep a lock on the file were enriched by being declared to
implement the java.io.Closeable interface that marked resources of these types as
closable, and a close() method is invoked to release resources transparently by the JVM
before execution ends. Also, in Java 7, try-with-resources was introduced. Making use of
all these features, the code can be written like this:

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;

try (BufferedReader reader = new BufferedReader(new FileReader(
new File("chapteril/read-write-file/src/main/resources/input/
vultures.txt")))){
StringBuilder sb = new StringBuilder();
String line;
while ((line = reader.readlLine()) != null) {
if(!line.contains("0oh")) {
sb.append(line).append("\n");
}

}
log.info("Read with BufferedReader --> {}", sb.toString());

} catch (Exception e) {
log.info("Something went wrong! ", e);

486

CHAPTER 11 WORKING WITH FILES

Still we have that ugly constructor within constructor thing that is quite ugly. Well,
Java 8 comes to the rescue by introducing the Files.newBufferedReader(Path) method.
So, the previous code becomes:

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;

File file = new File(
"chapter11/read-write-file/src/main/resources/input/vultures.txt");

Path sourceFile = Paths.get(file.toURI());
try (BufferedReader reader = Files.newBufferedReader(sourceFile)){

StringBuilder sb = new StringBuilder();

String line;

while ((line = reader.readlLine()) != null) {

if(!1line.contains("0oh")) {
sb.append(line).append("\n");
}

}
log.info("Read with BufferedReader --> {}", sb.toString());
} catch (Exception e) {
log.info("Something went wrong! ", e);

But still, by using a combination of lambda expressions, we could get a similar
behavior when reading the file line by line:

List<String> lyriclist = Files.readAlllLines(Paths.get(file.toURI()),
StandardCharsets.UTF_8)
.stream()
.filter(line -> !line.contains("Ooh"))
.collect(Collectors.tolList());

487

CHAPTER 11 WORKING WITH FILES

All we would have to do is traverse the lines and add everything to a StringBuilder
and voila!, same result, less boilerplate. Or we can write it this way, using the
Files.lines(..) introduced in Java 1.8 and get all contents as a stream:

Stream<String> lyricStream = Files.lines(file.toPath())
.filter(s -> !s.contains("0Ooh"));
lyricStream.forEach(System.out::println);

The BufferedReader class is a member of a class group that extends the Reader class.
It is an abstract class used for reading characters streams. The full hierarchy is depicted
in Figure 11-1.

1

I« Closeable

“ A
€ Reader
c InputStreamReader < BufferedReader - Pipedreader L4 CharArrayReader L StringReader £ FilterReader
< FileReader < LineNumberReader < PushbackReader

Figure 11-1. Reader class hierarchy

Character streams can have different sources, files being the most common. They
provide sequential access to data stored in the file. The BufferedReader does not provide
support for character encoding, but a BufferedReader can be based on another Reader
instance, and the one that provides reading character streams and taking encoding into
account is InputStreamReader. So, we can replace

try (BufferedReader reader = new BufferedReader(new FileReader(
new File("chapteril/read-write-file/src/main/resources/input/vultures.

txt")))){

488

CHAPTER 11 WORKING WITH FILES
with

import java.nio.charset.StandardCharsets;
import java.io.FileInputStream;

try (BufferedReader reader = new BufferedReader(new InputStreamReader(
new FileInputStream(

"chapteri1/read-write-file/src/main/resources/input/vultures.txt"),
StandardCharsets.UTF_8))){

But starting with Java 1.7, we don’t have to do that anymore because there is a
version of the Files.newBufferedReader that accepts a Charset instance as argument as
well. So, the code can be safely replaces with the following.

try (BufferedReader reader = Files.newBufferedReader(sourceFile,
StandardCharsets.UTF_8)){

In Java 11, the Reader was enriched with the nul1Reader () method, which returns
a Reader instance that does nothing. This was requested by developers for testing
purposes.

Using InputStream to Read Files

Classes in the Reader family are advanced classes for reading data as text. Files are a
sequence of bytes, so classes are wrappers around classes in a family of classes used
for reading byte streams. This becomes clear when trying to use the proper character
encoding when reading text using the BufferedReader, as the InputStreamReader
instance given as argument is based on a java.io.FileInputStreaminstance, a type
that is a subclass of java.io.InputStream.

The root class of this hierarchy is java.io.InputStream, which is depicted in
Figure 11-2.

489

CHAPTER 11 WORKING WITH FILES

I AutoCloseable

|

I Closeable

4

€ InputStream

= 1"

c FilterinputStream c FilelnputStream c ByteArrayinputStream I Datalnput
% .
]
T I i
€ = BufferedinputStream | € = DatalnputStream ‘

Figure 11-2. InputStream class hierarchy

The BufferedInputStream class is equivalent to BufferedReader for reading streams
of bytes. The System. in that we used to read user data from the console is of this type,
and the Scanner instance converts the bytes from its buffer into user understandable
data. When the data we are interested in is not text that was stored using Unicode
conventions, but raw numeric data (binary files such as images, media files, PDF’s, etc.)
classes for using streams of bytes are more suitable. Just for the purpose of showing you
how it’s done, we'll read the contents of the vultures.txt file using FileInputStream.

package com.apress.bgn.chil.reading;

import org.slf4j.Llogger;
import org.slf4j.LoggerFactory;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
public class FileInputStreamReadingDemo {
private static final Logger log =
LoggerFactory.getLogger(FileInputStreamReadingDemo.class);

490

CHAPTER 11 WORKING WITH FILES

public static void main(String... args) {

File file = new File(
‘chapter11/read-write-file/src/main/resources/input/vultures.txt");

try {

FileInputStream fis = new FileInputStream(file);
byte[] buffer = new byte[1024];
StringBuilder sb = new StringBuilder();
while (fis.read(buffer) != -1) {
sb.append(new String(buffer));
buffer = new byte[1024];
}

fis.close();

log.info("Read with FileInputStream --> {}", sb.toString());

} catch (IOException e) {

log.info("Something went wrong! ", e);

If you run the code, you notice that the expected output is printed in the console; but

after the text is printed a set of strange characters are printed too. On a macOS system,

they look like what’s shown in Figure 11-3.

7: Structure

* 2: Favorites

a

Run:

m @ & Y

FilelnputStreamReadingDemo

Ooh
Ooh
Ooh
Ooch

wWhat'cha gonna do about it?
What'cha gonna do about it?
What'cha gonna do about it?

Don'
Don*
Don"
Songwriters: John Mayer / Pino Palladino / Steven Jordar 0000000000000 000000000000

t give up, give up, give up
t give up, give up, give up
t give up, give up, give up

P 4:Run & 5:Dcbug = 6: TODO I 9: Version Control B Terminal "N BO@ = U Messages

Compilation completed successfully in 1s 86 ms (3 minutes ago)

Figure 11-3. Text read with FileInputStream

491

CHAPTER 11 WORKING WITH FILES

Do you have any idea what those characters might be?

It’s ok if you have no idea, I did not either the first time I had to use FileInputStream
toread a file. Those characters appear there because the file size is not a multiple of
1024, so the FileInputReader ends up filling the rest of the last buffer with zeroes. A fix
for this involves computing the size of the file in bytes and making sure we adapt the
byte[] buffer size accordingly. You can try doing that as an exercise if you are in the
mood for some coding. And now that we’ve shown you how to read file in a lot of ways,
we can continue by showing you how to write files, since you already know how to create
them.

InJava 11, the InputStream was also enriched with a method that returns an
InputStream that does nothing named nullInputStream() method, for testing
purposes.

Writing Files

Writing files in Java is similar to reading them, only different classes have to be used
because streams are unidirectional, which means that a stream that is used for reading
data cannot be used for writing data as well. Almost for any class or method of reading
files there is one for writing files. Without further ado, let’s start.

Writing Files Using Files Utility Methods

For smaller files, when we just need to write a bunch of bytes, the Files.write(Path,
byte[]) works fine.

package com.apress.bgn.chil.writing;

import org.slf4j.Logger;
import org.slf4j.lLoggerFactory;

import java.io.File;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;

492

CHAPTER 11 WORKING WITH FILES

public class FilesWritingDemo {
private static final Logger log =
LoggerFactory.getLogger(FilesWritingDemo.class);

public static void main(String... args) {
File file = new File(
"chapterii/read-write-file/src/main/resources/output/
vultures.txt");

byte[] data = "Some of us, we're hardly ever here".getBytes();
try {

Path dataPath = Files.write(file.toPath(), data);

log.info("String written to {}", dataPath.toAbsolutePath());
} catch (IOException e) {

e.printStackTrace();

If the file already exists, the contents are simply overwritten.

InJava 11, the Files.writeString(..) method was introduced, which allows
specifying a Charset when writing a String instance to a file; no conversion to bytes
needed either.

try {
Path dataPath = Files.writeString(file.toPath(),
"Some of us, we're hardly ever here",
StandardCharsets.UTF 8);
log.info("String written to {}", dataPath.toAbsolutePath());
} catch (IOException e) {
e.printStackTrace();

There are three Files.write(..) methods in the Files class: the one used in the
previous code snippet and two that can write collections of text values represented by
any instance of type that extends CharSequence. The only difference between the two is
that one of them also takes Charset as an argument.

493

CHAPTER 11~ WORKING WITH FILES
package com.apress.bgn.chil.writing;

import org.slf4j.Logger;
import org.slf4j.lLoggerFactory;

import java.io.File;

import java.io.IOException;

import java.nio.charset.StandardCharsets;
import java.nio.file.Files;

import java.nio.file.Path;

import java.util.Llist;

public class FilesWritingDemo {
private static final Logger log =
LoggerFactory.getLogger(FilesWritingDemo.class);

public static void main(String... args) {
List<String> datalist = List.of("Some of us, we're hardly ever here",
"The rest of us, we're born to disappear",
"How do I stop myself from",
"Being just a number?");
try {

File file2 = new File(
"chapter11i/read-write-file/src/main/resources/output/
vultures2.txt");

Path dataPath = Files.write(file2.toPath(), datalist,

StandardCharsets.UTF_8);
log.info("String written to {}", dataPath.toAbsolutePath());
} catch (IOException e) {
e.printStackTrace();

And those are all the methods in the Files class that are used for writing files
available in the Files class. Next, we look into writing files using classes in the Writer
hierarchy.

494

CHAPTER 11 WORKING WITH FILES

Using Writers to Write Files

Similar to the Reader hierarchy for reading files, there is an abstract class named Writer,
but before we get to that let’s introduce the BufferedWriter, the correspondent of
BufferedReader for writing files. This class too has an internal buffer, and when write
methods are called, the arguments are stored into the buffer, and when the buffer is

full, its contents are written to the file. The buffer can be emptied earlier by calling the
flush() method. I definitely recommend calling this method explicitly before calling
close() to make sure all output was written to the file. The next code snippet depicts
how a list of String instances is written to a file.

package com.apress.bgn.chil1l.writing;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.BufferedWriter;
import java.io.File;

import java.io.FileWriter;
import java.io.IOException;
import java.util.Llist;

public class FilesWritingDemo {
private static final Logger log =
LoggerFactory.getlLogger(FilesWritingDemo.class);

public static void main(String... args) {
File file = new File(
"chapteri1l/read-write-file/src/main/resources/output/vultures.txt");
List<String> lyriclist = List.of("Some of us, we're hardly ever
here",
"The rest of us, we're born to disappear”,
"How do I stop myself from",
"Being just a number?");
BufferedWriter writer = null;

495

CHAPTER 11 WORKING WITH FILES

try {
writer = new BufferedWriter(new FileWriter(file));

for (String lyric : lyriclist) {
writer.write(lyric);
writer.newlLine();
}
} catch (IOException e) {
log.info("Something went wrong! ", e);
} finally {
if(writer!= null) {
try {
writer.flush();
writer.close();
} catch (IOException e) {
log.info("Something went wrong! ", e);

Writing files is a sensitive operation, and the code contraption introduced earlier can
fail for many reasons. That type of code is what you would write before Java 1.7, when

try-with-resources reduced the boilerplate.

try (final BufferedWriter wr = new BufferedWriter(new FileWriter(file))){
lyriclist.forEach(lyric -> {
try {
wr.write(lyric);
log.info("Something went wrong! ", e);wr.newLine();
} catch (IOException e) {
log.info("Something went wrong! ", e);
}

};
wr.flush();

496

CHAPTER 11 WORKING WITH FILES

} catch (IOException e) {
log.info("Something went wrong! ", e);

The only real simplification that can be done is by calling Files.newBufferedWriter(..)
to avoid instantiating the BufferediWriter explicitly. This also adds in the advantage of
deciding the charset of the file to be written.

try (final BufferedWriter wr = Files.newBufferedWriter(file.toPath(),
StandardCharsets.UTF_8)){
lyriclist.forEach(lyric -> {

try {
wr.write(lyric);
wr.newLine();

} catch (IOException e) {
e.printStackTrace();

}

D;
wr.flush();

} catch (IOException e) {
log.info("Something went wrong!

, €);

If we did not have the Files.newBufferedWriter(..) method, writing text values
using a given charset would only be possible by using a different Writer class, the
OutputStreamWriter.

try (final OutputStreamWriter wr = new OutputStreamWriter(
new FileOutputStream(file), StandardCharsets.UTF 8)){
lyricList.forEach(lyric -> {
try {

wr.write(lyric);
wr.write("\n");
} catch (IOException e) {
e.printStackTrace();
}

}s
wr.flush();

497

CHAPTER 11 WORKING WITH FILES

} catch (IOException e) {
log.info("Something went wrong! ", e);

If the file already exists, calling the write(..) method overrides the contents of the
file. But this is not always needed, sometimes we just need to append new text to an
existing file. Bufferedwriter provides the append() method to do that.

try (final BufferedWriter wr = Files.newBufferedWriter(file.toPath(),
StandardCharsets.UTF_8)){
lyriclist.forEach(lyric -> {

try {
wr.append(lyric);
wr.append("\n");

} catch (IOException e) {
e.printStackTrace();

}

D;
wr.flush();

} catch (IOException e) {
log.info("Something went wrong!

, €);

Now that the basics of using BufferediWriter have been covered, it’s time to meet the
Writer family, which is depicted in Figure 11-4.

L =« AutoCloseable

|

4 C!oseahle| ‘: Flushable S Appendable
. » B
i i s L e
i
£ = Writer
+¢AITT+
< Ol::putStreamWr‘r:ar: € = CharArrayWriter | € = PrintWriter € = BufferedWriter € 'u StringWriter
T " . |
€ FilterWriter | < PipedWriter

€ = FileWriter

Figure 11-4. The Writer class hierarchy

498

CHAPTER 11 WORKING WITH FILES

The Writer class is abstract so it cannot be used directly, the appending API comes
from the java.io.Appendable interface, which Writer implements. The other Writer
classes are used for different purposes. As we've already seen, the OutputStreamhWriter
writes text using a special character set.

The PrintWriter writes formatted representations of objects to a text-output stream.
(We used it to write HTML code in Chapter 10).

The StringWriter collects output into its internal buffer and write it to a String
instance.

In Java 11, the Writer was enriched with the nullWriter() method, which returns a
Writer instance that does nothing. This was requested by developers for testing purposes.

Using OutputStream to Write Files

Classes in the Writer family are advanced classes for writing data as text using
character streams; but essentially, before data is written, it is turned into bytes. This
means that files can be written by using stream of bytes as well. This probably became
clear when trying to use the proper character encoding when writing text using the
OutputStreamWriter, as the OutputStreamWriter instance given as argument is based
on a FileOutputStreaminstance, a type that writes byte streams to a file.

The root class of this hierarchy is java.io.OutputStream, which is depicted in

Figure 11-5.
AutoCloseable
1 Closeable 1 Flushable
4 A
- -
|]
|]
c QutputStream
(= FilterOutputStream (= ByteArrayOutputStream ‘ I DataOutput
f f
|
T | |
€ = BufferedOutputStream | c DataOutputStream |

Figure 11-5. OutputStream class hierarchy
499

CHAPTER 11 WORKING WITH FILES

And since I mentioned FileOutputStream, let’s see how we could use it to write
the same list of entries that we have used before. The code is depicted in the following
listing.

package com.apress.bgn.chil1l.writing;

import com.apress.bgn.chii.reading.FileInputStreamReadingDemo;
import org.slf4j.Logger;
import org.slf4j.lLoggerFactory;

import java.io.File;

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

import java.util.list;

public class FileOutputStreamWritingDemo {
private static final Logger log =
LoggerFactory.getlLogger (FileOutputStreamWritingDemo.class);

public static void main(String... args) {
File file = new File(
"chapter11/read-write-file/src/main/resources/output/vultures3.txt");

List<String> lyriclist = List.of("Some of us, we're hardly ever
here",

"The rest of us, we're born to disappear”,

"How do I stop myself from",

"Being just a number?");

try (FileOutputStream output = new FileOutputStream(file)){
lyricList.forEach(lyric -> {

try {
output.write(lyric.getBytes());
output.write("\n".getBytes());

500

CHAPTER 11 WORKING WITH FILES

} catch (IOException e) {
log.info("Something went wrong! ", e);
}

D;
output.flush();

} catch (FileNotFoundException e) {
log.info("Something went wrong! ", e);

} catch (IOException e) {
e.printStackTrace();

The OutputStream family class is used for writing streams of bytes that represent raw
data, unreadable by users directly, such as the one contained in binary files like images,
media, PDFs, and so forth. For example, the next piece of code, makes a copy of an image
using FileInputStreamto read it and FileOutputStream to write it.

package com.apress.bgn.chi1;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.*;
import java.nio.file.Files;

public class DuplicateImageDemo {

private static final Logger log =
LoggerFactory.getLogger(DuplicateImageDemo.class);

public static void main(String... args) {
File src = new File(
"chapterii/read-write-file/src/main/resources/input/cat.jpg");
File dest = new File(

"chapterii/read-write-file/src/main/resources/output/cati.jpg");

501

CHAPTER 11 WORKING WITH FILES

try(FileInputStream fis = new FileInputStream(src);
FileOutputStream fos = new FileOutputStream(dest)) {
int content;
while ((content = fis.read()) != -1) {

fos.write(content);

}

} catch (FileNotFoundException e) {
log.error("Something bad happened.”, e);

} catch (IOException e) {
log.error("Something bad happened.", e);

But writing code like this is no longer necessary, thanks to the introduction of the
Files.copy(src.toPath(), dest.toPath()) method inJava 1.7.

In Java 11, the OutputStream was enriched with the nul10utputStream() method,
which returns an OutputStream instance that does nothing. This was requested by

developers for testing purposes.

And that’s about all the space that I can allocate in this book for writing files using

byte streams. Since there is a lot more to cover, two things before moving on...

When working with multiple files, do not open too many at the same
time, because some operating systems have a limit of how many files
a process can open at the same time. If you end up going over that
limit an IOException with a Too many open files message is thrown.

We did not cover in this book, but take extra care when working with
threads and files, because a file can be read by more than one thread
simultaneously, but more threads writing to the same file can lead to
unexpected results.

Serialization and Deserialization

Serialization is the name given to the operation of converting the state of an object to

a byte stream so it can be sent over a network or written to a file and reverted back into

a copy of that object. The operation to covert the byte stream back to an object is called

502

CHAPTER 11 WORKING WITH FILES

deserialization. Java Serialization has been a controversial topic, Java Platform Chief
Architect Mark Reinhold describing it as a horrible mistake done in 1997. Apparently
most Java vulnerabilities are somehow related to the way serialization is done in Java
and there is a project named Amber! that is dedicated to remove Java serialization
completely and allow developers to choose the serialization in a format of their choice.

Currently, things are unstable in Java; there were a lot of changes introduced in a
short time that an industry addicted to backward compatibility was unable to adapt to.
Sources in the next section might be unstable, but I will do my best to keep them at least
compliable by the time the book is published, and I will maintain the repository and
answer questions as much as possible.

Binary Serialization

The java.io.Serializable interface has no methods or fields and serves only to mark
classes as being serializable. When an object is serialized, the information that identifies
the object type is serialized as well. Most Java classes are serializable. Any subclass of

a serializable class is by default considered serializable, but if any new fields are non-
serializable an exception of type NotSerializableException is thrown. Classes written
by developers that contain non-serializable fields must implement the Serializable
interface and provide a concrete implementation for the following methods:

private void writeObject(java.io.ObjectOutputStream out)

throws IOException;
private void readObject(java.io.ObjectInputStream in)
throws IOException, ClassNotFoundException;

private void readObjectNoData()
throws ObjectStreamException;

The writeObject method is used for writing the state of the object, so that the
readObject method can restore it. The readObjectNoData method initializes the state
of the object when the deserialization operation failed for some reason, so this method
provides a default state despite the issues (e.g., incomplete stream, client application
does not recognize the reserialized class, etc.). This method is not really mandatory if

you are an optimist.

'Project Amber official page http://openjdk.java.net/projects/amber/
503

http://openjdk.java.net/projects/amber/

CHAPTER 11 WORKING WITH FILES

Also when making a class serializable, a static field of type long must be added as an
unique identifier for the class to make sure both the application that sends the object
as a byte stream and the client application receiving it have the same loaded classes.
If the application that receives the byte stream has a class with a different identifier,
a java.io.InvalidClassException is thrown. When this happens, this means the
application was not updated, or you can even suspect fowl-play from a hacker. The field
has to be named serialVersionUID, and if the developer does not explicitly add one, the
serialization runtime will. The following code snippet depicts a class named Singer that
contains serialization and deserialization methods.

package com.apress.bgn.ch11;

import java.io.*;
import java.time.localDate;
import java.util.Objects;

public class Singer implements Serializable {
private static final long serialVersionUID = 42L;

private String name;
private Double rating;
private LocalDate birthDate;

public Singer() {
/* required for deserialization */

}

public Singer(String name, Double rating, LocalDate birthDate) {
this.name = name;
this.rating = rating;
this.birthDate = birthDate;

}

private void writeObject(ObjectOutputStream out)
throws IOException {
out.defaulthWriteObject();

504

CHAPTER 11 WORKING WITH FILES

private void readObject(ObjectInputStream in)

throws IOException, ClassNotFoundException {
in.defaultReadObject();

}

private void readObjectNoData()

throws ObjectStreamException {

this.name = "undefined";

this.rating = 0.0;

this.birthDate = LocalDate.now();
}

@Override
public String toString() {
return "Singer{" +

"name="" + name + "\” +

", rating=" + rating +
", birthDate=" + birthDate +
B
}
@verride
public boolean equals(Object o) {
if (this == o) return true;
if (0 == null || getClass() != o.getClass()) return false;
Singer singer = (Singer) o;
return Objects.equals(name, singer.name) &&
Objects.equals(rating, singer.rating) 88&
Objects.equals(birthDate, singer.birthDate);

}

@verride
public int hashCode() {
return Objects.hash(name, rating, birthDate);

505

CHAPTER 11 WORKING WITH FILES

Now that we have the class, let’s instantiate it, serialize it, save it to a file and then
deserialize the contents of the file into another object that we compare with the initial object.

package com.apress.bgn.chi1;

import org.slf4j.Logger;
import org.slf4j.lLoggerFactory;

import java.io.*;
import java.time.LocalDate;
import java.time.Month;

public class SerializationDemo {

private static final Logger log =
LoggerFactory.getlLogger(SerializationDemo.class);

public static void main(String... args) throws ClassNotFoundException {
LocalDate johnBd = LocalDate.of(1977, Month.OCTOBER, 16);
Singer john = new Singer("John Mayer", 5.0, johnBd);

File file = new File(
"chapterii/serialization/src/main/resources/output/john.txt");
try (ObjectOutputStream out =
new ObjectOutputStream(new FileOutputStream(file))){
out.writeObject(john);
} catch (IOException e) {
log.info("Something went wrong! ", e);

}

try(ObjectInputStream in =
new ObjectInputStream(new FileInputStream(file))){
Singer copyOfJohn = (Singer) in.readObject();
log.info("Are objects equal? {}", copyOflJohn.equals(john));
log.info("--> {}", copyOfJohn.toString());
} catch (IOException e) {
log.info("Something went wrong! ", e);

506

CHAPTER 11 WORKING WITH FILES

When the code is run, everything works as expected; the writeObject and the
readObject are called by the ObjectOutputStream, ObjectInputStreamrespectively. If
you want to test that they are called, you can add logging, or you can place breakpoints
inside them and run the program in debug. If you open the john.txt you won’t be able to
understand much. The text written in there, does not make much sense, because it is binary,
raw data. If you open the file, you might see something like what is depicted in Figure 11-6.

O8] sr{] com. apress.bgn.chll. Singer(TTITTD= U -birthDatet[] Ljava/time/LocalDate;L]] namet]] L java/lang/String; LD ratingt(] Ljava/ lang/Double; xpsr(]
java.time . Ser@)08 "l xpw (0 &

»t[

John Mayerse] java. lang. Doub Le@8)) kb (D0 va luexr?] java. Lang . Nusbe 86 888 [Thxp@ [TTTIT

Figure 11-6. Serialized Singer instance

XML Serialization

But, Java serialization does not have to result in cryptic files, objects can be serialized

to readable formats. One of the most used serialization format is XML and JDK
provides classes to convert objects to XML and from XML back to the initial object. Java
Architecture for XML Binding (JAXB) provides a fast and convenient way to bind XML
schemas and Java representations, making it easy for Java developers to incorporate
XML data and processing functions in Java applications. The operation to serialize an
object to XML is named marshalling. The operation to deserialize an object form XML
is called unmarshalling. For a class to be serializable to XML, it has to be decorated with
JAXB-specific annotations.

e @XmlRootElement(name = "...") is atop-level annotation that is
placed at class level to tell JAXB that the class name becomes an XML
element at serialization time; if a different name is needed for the
XML element, it can be specified via the name attribute.

e @XmlElement(name = "..") is a method or field level annotation that
tells JAXB that the field or method name becomes an XML element at
serialization time; if a different name is needed for the XML element,
it can be specified via the name attribute.

o @XmlAttribute(name = "..") is a method or field level annotation
that tells JAXB that the field or method name becomes an XML
attribute at serialization time; if a different name is needed for the
XML attribute, it can be specified via the name attribute.

507

CHAPTER 11 WORKING WITH FILES

JAXB was removed from JDK 11, so if you want to use it, you must add external
dependencies. At the moment this chapter is being written it is also more than a little
unstable, class com.sun.xml.internal.bind.v2.ContextFactory is part of the
jaxb-impl library, which cannot be found on any public repository at the moment, at
least not a version that was compiled with Java 11. The following is the code to make the
Singer class serializable with JAXB.

package com.apress.bgn.ch11.xml;

import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
import java.io.Serializable;

import java.time.localDate;

import java.util.Objects;

@XmlRootElement(name = “singer”)

public class Singer implements Serializable {
private static final long serialVersionUID = 42L;

private String name;
private Double rating;
private LocalDate birthDate;

public Singer() {
/* required for deserialization */

}

public Singer(String name, Double rating, LocalDate birthDate) {
this.name = name;
this.rating = rating;
this.birthDate = birthDate;

}

@XmlAttribute(name = “name”)
public String getName() {
return name;

508

CHAPTER 11 WORKING WITH FILES

@XmlAttribute(name = “rating”)

public Double getRating() {

}

return rating;

@XmlElement(name = “birthdate”)

public LocalDate getBirthDate() {

return birthDate;

Notice the location where the annotations were placed. Based on the placement of

the annotation in the code when the john object is serialized, the following is what you
find in the john.xml file.

<?xml version="1.0" encoding="utf-8"?>

<singer name="John Mayer" rating="5.0">
<birthdate>1977-10-16T00:00:00Z</birthdate>
</singer>

More readable than the binary version, right? The next code snippet depicts the code

that saves the Singer instance to the john.xml file; it loads it back into a copy, and then

the two instances are compared.

package com.apress.bgn.ch11.xml;

import
import

import
import
import
import
import
import
import

org.slf4j.Logger;
org.slf4j.LoggerFactory;

javax.xml.bind.JAXBContext;
javax.xml.bind.JAXBException;
javax.xml.bind.Marshaller;
javax.xml.bind.Unmarshaller;
java.io.*;
java.time.LocalDate;
java.time.Month;

509

CHAPTER 11 WORKING WITH FILES
public class JAXBSerializationDemo {

private static final Logger log =
LoggerFactory.getLogger (JAXBSerializationDemo.class);

public static void main(String... args)
throws ClassNotFoundException, JAXBException {
LocalDate johnBd = LocalDate.of(1977, Month.OCTOBER, 16);
Singer john = new Singer("John Mayer", 5.0, johnBd);

File file = new File(
"chapterii/serialization/src/main/resources/output/john.xml");
JAXBContext jaxbContext = JAXBContext.newInstance(Singer.class);

try {
Marshaller marshaller = jaxbContext.createMarshaller();

marshaller.setProperty(Marshaller.JAXB FORMATTED OUTPUT, true);
marshaller.marshal(john, file);

} catch (Exception e) {
log.info("Something went wrong! ", e);

}

try {
Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();

Singer copyOfJohn = (Singer) unmarshaller.unmarshal(file);
log.info("Are objects equal? {}", copyOfJohn.equals(john));
log.info("--> {}", copyOfJohn.toString());

} catch (Exception e) {
log.info("Something went wrong! ", e);

The class javax.xml.bind.JAXBContext is created by calling the newInstance static
method and is given as argument a list of classes that will be handled (marshalled,
unmarshalled) by this context instance. If none are specified, the JAXBContext only
knows about spec-defined classes and those are the only ones that can be handled by the

instance.

510

CHAPTER 11 WORKING WITH FILES

XML serialization has been dominating the development field for a lot of years, being
used in most web services and remote communication. But XML files tend to become
crowded, redundant and painful to read as they become bigger. So, a new format stole
the show: JSON.

JSON Serialization

JSON(JavaScript Object Notation) is a lightweight data-interchange format. It is readable
for humans and is easy for machines to parse and generate. JSON is the favorite format
for data being used in JavaScript applications, for REST based application and is the
internal format used by quite a few NoSQL databases. So, it is only appropriate that

we show you how to serialize Java objects using this format as well. The advantage of
serializing Java objects to JSON is that there is more than one library providing classes to
do so, which means at least one of them is stable with Java 9+ versions.

The most preferred library for JSON serialization is the Jackson library? because it can
convert Java objects to JSON objects and back again without much code being needed to
be written. Unfortunately, no version compatible with Java 9+ had been released yet, so for
this section, a less advanced library compatible with Java 9+ will be used.

JSON format s a collection of key-pair values. The values can be arrays, or collections
of key-pairs themselves. Converting Java objects to JSON objects using the JSON library
(yes, it's named exactly like that) is easy. We create a JSONObject and populate it with the
field names and values of the Singer object, and then we convert the JSONObject to String
and eventually write it to a file. In the following code sample, we skipped the writing to file
part and we transform the String back into a copy of the initial Singer object.

package com.apress.bgn.chi1l.json;

import com.apress.bgn.chi1i.xml.Singer;
import org.json.JSONObject;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.time.localDate;

import java.time.Month;
import java.time.format.DateTimeFormatter;

2Official GitHub repository for the company that produces the Jackson library https://github.
com/FasterXML

511

https://github.com/FasterXML
https://github.com/FasterXML

CHAPTER 11 WORKING WITH FILES

public class JsonSerializationDemo {
private static final Logger log =
LoggerFactory.getLogger(JsonSerializationDemo.class);

public static void main(String... args) {
LocalDate johnBd = LocalDate.of(1977, Month.OCTOBER, 16);
Singer john = new Singer("John Mayer", 5.0, johnBd);

JSONObject jsonObject = new JSONObject();
jsonObject.put("name", john.getName());
jsonObject.put("rating"”, john.getRating());
jsonObject.put("birthdate", john.getBirthDate().toString());
String jsonData = jsonObject.toString(2);

log.info("--> Serialized {}", jsonData);

JSONObject readJson = new JSONObject(jsonData);

Singer copyOfJohn = new Singer((String) readJson.get("name"),
Double.parseDouble(((Integer)readlson.get("rating")).
toString()),
LocalDate.parse((String)readJson.get("birthdate"),

DateTimeFormatter.ISO LOCAL DATE));
log.info("Are objects equal? {}", copyOfJohn.equals(john));
log.info("--> Deserialized {}", copyOfJohn);

The number given as a parameter to the jsonObject.toString(2); method is
an indentation value used to format the resulted text. When the previous program is
executed, the output you can expect to see in the console should look very similar to this.

[main] INFO com.apress.bgn.ch11.json.JsonSerializationDemo - -->
Serialized {

"birthdate": "1977-10-16",

"name": "John Mayer",

"rating": 5

}

512

CHAPTER 11 WORKING WITH FILES

[main] INFO com.apress.bgn.chil.json.JsonSerializationDemo - Are objects

equal? true

[main] INFO com.apress.bgn.chil.json.JsonSerializationDemo - -->
Deserialized Singer{name='John Mayer', rating=5.0, birthDate=1977-10-16}

Theoretically this library provides a method to serialize an object directly by calling:

LocalDate johnBd = LocalDate.of(1977, Month.OCTOBER, 16);
Singer john = new Singer("John Mayer", 5.0, johnBd);
JSONObject jo = new JSONObject(john);

But the version that the project is currently using seems to have a bug and cannot
actually do that. So, the only hope for developers that plan to write Java 9+ applications
to use practical JSON serialization/deserialization is to either build one themselves, or to
hope that a stable version of Jackson built with Java9+ is available soon.

The Media API

Aside from text data, Java can manipulate binary files such as images. The Java Media
API contains a set of image encoder/decoder (codec) classes for several popular image
storage formats: BMP, GIF (decoder only), FlashPix (decoder only), JPEG, PNG, PNM?,
TIFE, and WBMP.

In Java 9, the Java media API was transformed as well and functionality to
encapsulate many images with different resolutions into a multiresolution image was
added.

The core of the Java Media API is the java.awt.Image class that is the superclass to
represent graphical images. The most important image classes and their relationships
are depicted in Figure 11-7.

3The portable pixmap format (PPM), the portable graymap format (PGM) and the portable
bitmap format (PBM) are image file formats designed to be easily exchanged between platforms.
They are also sometimes referred to collectively as the portable any map format (PNM). More
details at https://en.wikipedia.org/wiki/Netpbm format

513

https://en.wikipedia.org/wiki/Netpbm_format

CHAPTER 11 WORKING WITH FILES

I - Renderedimage

€ = Image T

I MultiResolutionimage I Transparency i I WritableRenderedimage
: : ?
| I e
] 1 1
I I 1
€ AbstractMultiResolutionimage = Volatileimage < Bufferedimage

T

€ = BaseMultiResolutionimage ‘
Figure 11-7. Image classes hierarchy

Although the java.awt.Image class is the most important in this hierarchy, the
most used is java.awt.BufferedImage, which is an implementation with an accessible
buffer of image data. It provides a lot of methods to create an image, to set its size and its
contents, to extract its contents and analyze them, and so much more. In this section, we
make use of this class to read and write images.

An image file is a complex file, aside from the picture itself, contains a lot of
additional information, the most important nowadays is the location where that image
was created. If you ever wondered how a social network proposes a check-in location
for an image you are posting, this is where the information is found. This might not
seem that important, but posting a picture of your cat, taken in your house, exposes your
location to the whole world getting their hands on it. I'm not sure what you think about
it, but to me this is terrifying. I used to post pictures of my cat sitting comfortable on the
computer I am writing this book on now on my personal blog. I basically exposed my
location and that of an expensive laptop to the whole world. Sure, most people do not
care about my cat, nor the laptop, but somebody that might be looking to make an easy
buck might. So, after a friendly and knowledgeable reader send me a private email telling
be about something called EXIF data and how he knows where I live because of the last
picture I've posted on my blog, Ilooked into it. A photo’s EXIF data contains a ton of
information about your camera, and where the picture was taken (GPS coordinates).
Most smartphones embed EXIF data into pictures taken with their camera. Figure 11-8
shows the EXIF information depicted in the macOS Preview application.

514

CHAPTER 11 WORKING WITH FILES

@ Preview File Edit View Go Tools Window Help
[] [] More Info

) — e— Q ’
General Exif m TIFF

Altitude 123.06 m (403.69 ft)
Altitude Reference above sea level
Date Stamp 31 Aug 2018
GPS Version 2.2.0.0
Latitude 55° 56' 24.624" N
Longitude 3°11' 5.208" W
Time Stamp 19:48:41 UTC

Em)

@ @
A90
AD

EdinB®urgh 8

OMusseiburgh

A
{ @] owhitcc:laig
aGaY
[a0) Danderhall e
o ~Agg

A
o
Heriot-Watt

University

e o
Lugn! — Malleaith

Show in Maps Remove Location Info

Figure 11-8. EXIF information on a JPG image

The EXIF info contains the exact location (latitude and longitude included) where
the picture was taken. EXIF stands for Exchangeable Image File Format. There are
utilities to remove it, but when you post a lot of pictures on your blog (like I do), it takes
too much time to clean them one by one. This is where Java comes in and I will share
with you a snippet of code that I use to clean my pictures of EXIF data.

package com.apress.bgn.ch11;

import org.apache.commons.imaging.formats.jpeg.exif.ExifRewriter;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

515

CHAPTER 11 WORKING WITH FILES

import javax.imageio.ImagelIO;

import java.awt.*;

import java.awt.image.BaseMultiResolutionImage;
import java.awt.image.BufferedImage;

import java.io.*;

import java.util.list;

public class MediaDemo {
private static final Logger log = LoggerFactory.getlLogger(MediaDemo.
class);

public static void main(String... args) {
File src = new File(
"chapteri1/media-handling/src/main/resources/scottish sky.jpg");
try {

log.info(" --- Removing EXIF info ---");

File destNoExif = new File(
"chapter11/media-handling/src/main/resources/scottish_sky
noexif.jpg");

removeExifTag(destNoExif, src);

} catch (Exception e) {

log.error("Something bad happened.”, e);

}

private static void removeExifTag(final File dest, final File src)
throws Exception {
new ExifRewriter().removeExifMetadata(src, new FileOutputStream(dest));

To easily remove EXIF data, a utility class called ExifRewriter is used. It is part of
a library named Sanselan created by Apache. This library is unmaintained, but since
it doesn’t have any dependencies, compiling it with JDK 11 works just fine. I've forked
the GitHub repository and created my own branch named feature/jdk11-gradle-
build athttps://github.com/iuliana/sanselan. The artifact resulted by building
that branch was added as a dependency to the project. That is why the ExifRewriter.
removeExifMetadata() can be used. This method is given as an argument the source of

516

https://github.com/iuliana/sanselan

CHAPTER 11 WORKING WITH FILES

the image and an OutputStream to a location where the new image should be saved. To
test that the resulting image has no EXIF data, open it in an image viewer, any option that
shows EXIF should either be disabled or should display nothing. In the Preview image
viewer in macOS, the option is grayed out.

Now that we got that out of the way, let’s resize the resulted image. To resize an image
we need to create a BufferedImage instance from the original image to get the image
dimensions. After that, we modify the dimensions and use them as arguments to create a
new BufferedImage, which is populated with data by a java.awt.Graphics2D instance,

a special type of class that renders 2D shapes, text, and images. The code is depicted in
the next listing. And the method is called to create an image 25% smaller, an image 50%
smaller, and an image 75% smaller.

package com.apress.bgn.ch11;

import org.apache.commons.imaging.formats.jpeg.exif.ExifRewriter;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import javax.imageio.ImagelO;

import java.awt.*;

import java.awt.image.BaseMultiResolutionImage;
import java.awt.image.BufferedImage;

import java.io.*;

import java.util.Llist;

public class MediaDemo {
private static final Logger log = LoggerFactory.getlLogger(MediaDemo.
class);

public static void main(String... args) {
File src = new File(
"chapteri1/media-handling/src/main/resources/scottish_sky.jpg");
try {

log.info(" --- Removing EXIF info ---");

File destNoExif = new File(
"chapteri1/media-handling/src/main/resources/scottish_sky
noexif.jpg");

removeExifTag(destNoExif, src);

517

CHAPTER 11 WORKING WITH FILES

518

log.info(" --- Creating 25% image ---");

File dest25 = new File(
"chapter11/media-handling/src/main/resources/scottish_
sky_25.3pg");

resize(dest25, destNoExif, 0.25f);

log.info(" --- Creating 50% image ---");
File dest50 = new File(
"chapter11/media-handling/src/main/resources/scottish_

sky_50.jpg");
resize(dest50, destNoExif, 0.5f);

log.info(" --- Creating 75% image ---");

File dest75 = new File(
"chapter11/media-handling/src/main/resources/scottish_
sky_75.3pg");

resize(dest75, destNoExif, 0.75f);

} catch (Exception e) {

log.error("Something bad happened.”, e);

}

private static void resize(final File dest, final File src, final float
percent)

throws IOException {

BufferedImage originalImage = ImagelO.read(src);

int scaledwidth = (int) (originalImage.getWidth() * percent);

int scaledHeight = (int) (originallmage.getHeight() * percent);

BufferedImage outputImage = new BufferedImage(scaledWidth,
scaledHeight, originallImage.getType());

Graphics2D g2d = outputImage.createGraphics();
g2d.drawImage(originalImage, 0, 0, scaledWidth, scaledHeight, null);
g2d.dispose();

outputImage.flush();

CHAPTER 11 WORKING WITH FILES

ImageI0.write(outputImage, “ipg”, dest);

To make things easier, the ImageIO class utility methods come in handy for reading
images from files, or writing them to a specific location. If you want to test that the
resizing works, you can look in the resources directory.

The output files have already been named accordingly, but to make sure, you can
double check in a file viewer. You should see something similar to what is depicted in

Figure 11-9.
=~ scottish_sky_25.jpg 43 KB
= scottish_sky 50.jpg 120 KB
= scottish_sky_75.jpg 218 KB
= scottish_sky_noexif.jpg 1.1 MB
=~ scottish_sky.jpg 1.1 MB

Figure 11-9. Images resized using Java code

The resulting images are not as high in quality as the original image, because
compressing the pixels does not result in higher quality, but they do fit the sizes we
intended.

Now that we have all these versions of the same image we can use them to create a
multiresolution image using the BaseMultiResolutionImage class introduced in Java 9.
An instance of this class is created from a set of images, all copy of a single image,
but with different resolutions. This is why we created more than one resized copy of
the image. A BaseMultiResolutionImage retrieves images based on specific screen
resolutions and it is suitable for applications designed to be accessed from multiple
devices. Let’s see the code first and then explain the results.

package com.apress.bgn.chii;

import org.apache.commons.imaging.formats.jpeg.exif.ExifRewriter;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

519

CHAPTER 11 WORKING WITH FILES

import javax.imageio.ImagelIO;

import java.awt.*;
import java.awt.image.BaseMultiResolutionImage;
import java.awt.image.BufferedImage;

import java.io.*;
import java.util.list;

public class MediaDemo {

520

private static final Logger log = LoggerFactory.getlLogger(MediaDemo.
class);

public static void main(String... args) {
File src = new File(
"chapteri1/media-handling/src/main/resources/scottish sky.jpg");
try {
Image[] imglList = new Image[]{
ImageIO.read(dest25), // 1008 x 277
ImageIO.read(dest50), //2016 x 554
ImageIO.read(dest75), // 3024 x 831
ImageIO.read(src) // 4032 x 1108

}s

log.info(" --- Creating multi-resolution image ---");
File destVariant = new File(
"chapter11/media-handling/src/main/resources/sky variant.jpg");
createMultiResImage(destVariant, imglist);
} catch (Exception e) {
log.error("Something bad happened.”, e);

}

private static void createMultiResImage(final File dest, final Image[]
imglist)
throws IOException {
MultiResolutionImage mrImage = new BaseMultiResolutionImage(o0,
imglist);

CHAPTER 11 WORKING WITH FILES
List<Image> variants = mrImage.getResolutionVariants();
variants.forEach(System.out::println);

Image img = mrImage.getResolutionVariant(700, 250);
log.info("Most fit to the requested size<{},{}>: <{},{}>", 700, 250,
img.getWidth(null), img.getHeight(null));

if (img instanceof BufferedImage) {
ImageIO.write((BufferedImage) img, "jpg", dest);

To clearly show which image is selected, the resolution of each image has a comment
next to it. The BaseMultiResolutionImage instance is created from an array of Image
instances. When getResolutionVariant(..) is called, the arguments are compared
to the corresponding image properiest, and if both are less than equal to the values
of one of the images, that image is returned. In the next code snippet, the code of the
BaseMultiResolutionImage.getResolutionVariant(..) is depicted.

@verride
public Image getResolutionVariant(double destImageWidth,
double destImageHeight) {

checkSize(destImageWidth, destImageHeight);

for (Image rvImage : resolutionVariants) {
if (destImageWidth <= rvImage.getWidth(null)
88 destImageHeight <= rvImage.getHeight(null)) {
return rvImage;

}

return resolutionVariants[resolutionVariants.length - 1];

521

CHAPTER 11 WORKING WITH FILES

The previous code leads to two conclusions.

o Both the desired width and height that are given as arguments
must be less or equal to the properties of one of the images the
multiresolution image was created from; otherwise, the default image
is returned—the one with the index given as argument for the base
image index in the BaseMultiResolutionImage constructor. This
means that getResolutionVariant (700, 250) returns image dest25
because 700 <= 1008 && 250 <= 277 and (1008 x 277) is the (width
x height) of this image. The call getResolutionVariant(700, 300)
leads to image src being returned, because the previous condition is
no longer evaluated to true while iterating the list, so the last image in
the list is retuned, because the method exits through return
resolutionVariants[resolutionVariants.length - 1];

o The array the BaseMultiResolutionImage instance is created from
must be sorted in ascending order of the width and height of the
images; otherwise, an image with the wrong dimensions is returned,
because the decision algorithm is not that efficient.

So, if the algorithm is not efficient what can be done? It’s simple: we can create our
own MultiResolutionImage implementation that extends BaseMultiResolutionImage
and overrides the getResolutionVariant() method. Since we know that all images are
resized copies of the same image, this means width and height are proportional. So, an
algorithm that always returns the variant of the image that is most suitable to the desired
resolution can be written that does not really care about the order of the images in the
array, and that it returns the image that fits most. So, the implementation might look
similar to the following class.

package com.apress.bgn.ch11;

import java.awt.*;

import java.awt.image.BaseMultiResolutionImage;
import java.util.Arraylist;

import java.util.HashMap;

import java.util.Map;

522

CHAPTER 11 WORKING WITH FILES

public class SmartMultiResolutionImage
extends BaseMultiResolutionImage {

public SmartMultiResolutionImage(int baseImageIndex,
Image... resolutionVariants) {
super(baseImageIndex, resolutionVariants);

}

@verride
public Image getResolutionVariant(double destImageWidth,
double destImageHeight) {
checkSize(destImageWidth, destImageHeight);

Map<Double, Image> result = new HashMap<>();

for (Image rvImage : getResolutionVariants()) {
double widthDelta = Math.abs(destImageWidth - rvImage.
gethWidth(null));
double heightDelta = Math.abs(destImageHeight - rvImage.
getHeight(null));
double delta = widthDelta + heightDelta;
result.put(delta, rvImage);

}

java.util.List<Double> deltalist = new ArraylList<>(result.keySet());
deltalist.sort(Double: :compare);

return result.get(deltalist.get(0));
}

private static void checkSize(double width, double height) {
if (width <= 0 || height <= 0) {
throw new IllegalArgumentException(String.format(
"Width (%s) or height (%s) cannot be <= 0", width,
height));

523

CHAPTER 11 WORKING WITH FILES

if (!Double.isFinite(width) || !Double.isFinite(height)) {
throw new IllegalArgumentException(String.format(
"Width (%s) or height (%s) is not finite", width,
height));

The checkSize(..) method must be duplicated, as it is private and used
inside getResolutionVariant(..), so it cannot be called inside a superclass,
but that is a minor inconvenience to having an implementation that has a proper
behavior. In the previous implementation, we no longer need a sorted array. Also,
calls to getResolutionVariant(700, 250), getResolutionVariant(700, 300),
getResolutionVariant (800, 250), getResolutionVariant (800, 400) all return
image dest25.

Image[] imglist = new Image[]{
ImageIO.read(src), // 4032 x 1108
ImageIO.read(dest75), // 3024 x 831
ImageIO.read(dest25), // 1008 x 277
ImageIO.read(dest50) // 2016 x 554

}s

log.info(" --- Creating multi-resolution image ---");

File destVariant = new File(
"chapteri1/media-handling/src/main/resources/sky variant.jpg");

createMultiResImage(destVariant, imglist);

BufferedImage variantImg = ImageIO.read(destVariant);

BufferedImage dest25Img = ImageIO.read(dest25);

log.info("Are identical? {}", variantImg.equals(dest25Img));

private static void createMultiResImage(final File dest, final Image[]
imglist)

throws IOException {

MultiResolutionImage mrImage = new SmartMultiResolutionImage(0, imglist);

524

CHAPTER 11 WORKING WITH FILES
List<Image> variants = mrImage.getResolutionVariants();
variants.forEach(i -> log.info(i.toString()));

Image img = mrImage.getResolutionVariant(700, 400);
log.info("Most fit to the requested size<{},{}>: <{},{}>", 700, 400,
img.getWidth(null), img.getHeight(null));

if (img instanceof BufferedImage) {
ImageIO.write((BufferedImage) img, "jpg", dest);

Running the log, the following is printed in the console.

INFO com.apress.bgn.chil.MediaDemo - --- Creating multi-resolution image
INFO com.apress.bgn.chi1l.MediaDemo - BufferedImage@3c9dobod: type = 5
ColorModel:
#... ByteInterleavedRaster: width = 4032 height = 1108 #numDataElements 3
dataOff[0] = 2
INFO com.apress.bgn.chil.MediaDemo - BufferedImage@64cd705f: type = 5
ColorModel:
#... ByteInterleavedRaster: width = 3024 height = 831 #numDataElements 3
data0Off[0] = 2
INFO com.apress.bgn.chil.MediaDemo - BufferedImage@9225652: type = 5
ColorModel:
#... ByteInterleavedRaster: width = 1008 height = 277 #numDataElements 3
data0Off[o0] = 2
INFO com.apress.bgn.chil.MediaDemo - BufferedImage@654f0d9c: type = 5
ColorModel:
#... ByteInterleavedRaster: width = 2016 height = 554 #numDataElements 3
dataOff[0] = 2
INFO com.apress.bgn.chii.MediaDemo - Most fit to the requested
$1ze<700,400>: <1008,277>
INFO com.apress.bgn.chii.MediaDemo - Are identical? false

525

CHAPTER 11 WORKING WITH FILES

Wait what? Why are the images not identical? Well, they do have the same resolution,
but as objects are not identical, because drawing pixels is not really that precise. But if
you really want to make sure, you could print the width and height of the two images,
open them with an image viewer and notice that to the naked eye, they look identical.

log.info("variant width x height : {} x {}", variantImg.getWidth(),
variantImg.getHeight());

log.info("dest25Img width x height : {} x {}", dest25Img.getWidth(),
dest25Img.getHeight());

The code prints the width and height of the two images, making it obvious that the
two images have the same dimensions, just as expected.

INFO com.apress.bgn.chil.MediaDemo - variant width x height : 1008 x 277
INFO com.apress.bgn.chii.MediaDemo - dest25Img width x height : 1008 x 277

Using JavaFX Image Classes

Aside from the Java Media API, which is centered on components of the java.awt
package, another way to display and edit images is provided by JavaFX. The core class
for the javaftx.scene. image package is called Image, which handles images in a few
common formats: PNG, JPEG, BMP, and GIE JavaFX applications can display images
using an instance of javafx.scene.image.ImageView. The part that I like most about
this class is that the images can be also displayed scaled, without the original image
being modified.

To create a javafx.scene.image.Image instance, all we need is a FileInputStream
instance to read the image from the user-provided location, or a URL location given as
String. The following code snippet creates a JavaFX application that displays an
image with its original width and height, which can be accessed using methods in the
javafx.scene.image.Image class.

package com.apress.bgn.chii;

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.scene.image.Image;
import javafx.scene.image.ImageView;

526

CHAPTER 11 WORKING WITH FILES

import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

import java.io.File;
import java.io.FileInputStream;

public class JavaFxMediaDemo extends Application {

public static void main(String... args) {
Application.launch(args);

}

@verride

public void start(Stage primaryStage) throws Exception {
primaryStage.setTitle("JavaFX Image Demo");
File src = new File("chapterii/media-handling/src/main/resources/
cover.png");
Image image = new Image(new FileInputStream(src));

ImageView imageView = new ImageView(image);
imageView.setFitHeight(image.getHeight());
imageView.setFitWidth(image.getWidth());
imageView.setPreserveRatio(true);

//Creating a Group object

StackPane root = new StackPane();

root.getChildren().add(imageView);

primaryStage.setScene(new Scene(root,
image.getWidth()+10,
image.getHeight()+10));

primaryStage.show();

The Image instance cannot be added to the Scene of the JavaFX instance directly
as it does not implement the Node interface, which is required to be implemented by
all JavaFX elements that make a JavaFX application. That is why this instance must be
wrapped in a javafx.scene.image.ImageView instance thatis a class implementing
node, which is a specialized class for painting images loaded with Image class.

527

CHAPTER 11 WORKING WITH FILES

This class resizes the displayed image with or without preserving the original aspect
ratio by calling the setPreserveRatio(..) method with the appropriate argument: true
to keep the original aspect ratio; false otherwise.

In the previous code, we use the values retuned by image.getWidth() and image.
getHeight () to set the size of the ImageView object and the size of the Scene instance.
But let’s get creative and display the scaled image, still preserving the aspect ratio
and also using a better-quality filtering algorithm when scaling the image using the
smooth(..) method.

ImageView imageView = new ImageView(image);
imageView.setFitWidth(100);
imageView.setPreserveRatio(true);
imageView.setSmooth(true);

The ImageView class also supports a Rectangle2D viewport that rotates the image.
import javafx.geometry.Rectangle2D;
ImageView imageView = new ImageView(image);

Rectangle2D viewportRect = new Rectangle2D(2, 2, 600, 600);
imageView.setViewport(viewportRect);

imageView.setRotate(90);

Being an implementation of Node, ImageView supports clicking events, and it is easy
to write some code to resize an image on click. Just take a look.

ImageView imageView = new ImageView(image);
imageView.setFitHeight(image.getHeight());
imageView.setFitWidth(image.getWidth());
imageView.setPreserveRatio(true);
root.getChildren().add(imageView);
imageView.setPickOnBounds(true);

528

CHAPTER 11 WORKING WITH FILES

imageView.setOnMouseClicked(mouseEvent -> {

if(imageView.getFitWidth() > 100) {
imageView.setFitWidth(100);
imageView.setPreserveRatio(true);
imageView.setSmooth(true);

} else {
imageView.setFitHeight(image.getHeight());
imageView.setFitWidth(image.getWidth());
imageView.setPreserveRatio(true);

};

By calling onMouseClicked, we attached an EventHandler<? super MouseEvent>
instance to the mouse-clicking event on imageView. The EventHandler<T extends
Event> is a functional interface containing a single method named handle, and its
concrete implementation is the body of the lambda expression in the previous code
listing.

Since JavaFX was taken out of JDK 11, there is no real value in going over more
image processing classes in this section. But if you are interested in learning more about
this subject, this tutorial from Oracle should do the job: https://docs.oracle.com/
javafx/2/image_ops/jfxpub-image ops.htm. Also, as practice, you can try writing your
own code, based on the code in the book, to add a mouse event that rotates the image.

And this is all the space that I can dedicate to playing with images in the Java. hope
you found this section useful and might get the chance to test your Java Media API skills
in the future, if not for anything else, at least for cleaning EXIF data from your images.

Summary

This chapter has covered most of the information that you need to know to work with
various types of files, and to serialize Java objects, save them to a file, and then recover
them through deserialization. When writing Java applications, you typically need to save

529

https://docs.oracle.com/javafx/2/image_ops/jfxpub-image_ops.htm
https://docs.oracle.com/javafx/2/image_ops/jfxpub-image_ops.htm

CHAPTER 11 WORKING WITH FILES

data to files or read data from files and this chapter provides a wide list of components to
do so. The following is a short summary of this chapter.

e howtouse File and Path instances
e howto use utility methods in Files and Paths

» howto serialize/deserialize Java objects to/from binary, XML and
JSON

e how to resize and modify images using the Java Media API

o how to use images in JavaFX applications

530

CHAPTER 12

The Publish/Subscribe
Framework

All the programming concepts explained so far involved data that needed to be
processed. Regardless of the form in which data is provided, the Java programs we've
written so far took that data, modified it, and printed the results, whether to the console,
to files, or to another software component. You could say that all of these components
were communicating with each other and passing processed data from one to another.
Figure 12-1 abstractly describes interactions among Java components in a program.

o ambom s List<Siring> _ List<String> Document Document ’ ey nandom l‘
o b . Fi - - Prin
) Reader iter Betator ter H s e

Java Program

Figure 12-1. Interactions between Java components within a program

Each of the arrows is marked with the type of information being passed from
one component to another. In Figure 12-1, you can identify a starting point where
information enters the program (by being read by the Reader), and an end point where
the information is printed to some output component by the Printer. So, you could
say that the Reader provides the data, the Filter and the DocumentCreator are some
internal processor, processing the data and the Printer is the consumer of the data.

What was described so far is resembles a point-to-point (p2p) messaging model,
which describes a concept of one message being send to one consumer. The p2p
model is specific to an Java API called Java Message Service (JMS) that supports the
formal communication known as messaging between computers in a network. In the
example that begins this chapter an analogy was made to show that communication

531

© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_12

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

between components of a Java Program works in a similar manner. And so, the design
of a solution to implement a process as described in Figure 12-1 could be created by
considering all components linked into a messaging style communication model. There
is more than one communication model—Producer/Consumer, Publish/Subscribe,
Sender/Receiver, each with its own specifics,! but this chapter is focused on Publish/
Subscribe because it is the model that reactive programming is based on.

Reactive Programming and the Reactive Manifesto

Reactive programming is a declarative programming style that involves using data
streams and propagation of change. You learned how to use streams in Chapter 8, so
we're one step closer. Now all we must do is learn how to use reactive streams. Reactive
programming involves using asynchronous data streams or event streams. Using reactive
streams is not a new idea.

The Reactive Manifesto was first made public in 2014.2 It made a request for software
to be developed in such a way that systems are responsive, resilient, elastic, and message
driven, in short they should be reactive. The following explains each of the four terms.

¢ Responsive should provide fast and consistent response times.

¢ Resilient should remain responsive in case of failure and be able to

recover.

o Elastic should remain responsive and be able to handle various
workloads.

e Message driven should communicate using asynchronous messages,
avoid blocking and applying back pressure when necessary.

Systems designed this way are supposed to be more flexible, loosely coupled, and
scalable, but at the same time they should be easier to develop, amendable to change
and more tolerant of failure. But to accomplish all that, the systems need a common API
for communication. Reactive Streams is an initiative to provide such a standard API for
asynchronous, non-blocking stream processing that also supports back-pressure. We'll

'Ifyou are interested more in communication models, you can search the web for Enterprise
Integration Patterns.

*Read it at https://www.reactivemanifesto.org/

532

https://www.reactivemanifesto.org/

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

explain what back-pressure means in a moment. Let’s start with the basics of reactive
stream processing.

Any type of stream processing involves a producer of data, a consumer of data, and
components in the middle between them that process the data. The direction of the data
flow is from the producer to the consumer. The abstract schema of a system is depicted
in Figure 12-2.

Produces PI‘OO?SSOF PI“OC;SW " Processor

Consumer

Figure 12-2. Producer/Consumer system

The system might end up in a pickle when the producer is faster than the consumer.
So the extra data that cannot be processed must be dealt with. There is more than one
way of doing that.

e The extra data is discarded (this is done in network hardware).
e The producer is blocked so the consumer has time to catch up.

o The data is buffered, but buffers are limited and if we have a fast
producer and a slow consumer there is a danger of the buffer
overflowing.

e By applying back pressure, which involves giving the consumer
the power to regulate the producer and control how much data is
produced. Back pressure can be viewed as a message being sent from
the consumer to the producer to let it know it has to slow its data
production rate. With this in mind, we can complete the design in
Figure 12-2, which results in Figure 12-3.

Back Back
Back Pressure Back Pressure
Pressure P P Prossure P
rocessor . rocessor .] rocessor |
Producer 2 Consumer
De 1 Dota " Data n Dt

Figure 12-3. Reactive Producer/Consumer system

533

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

If producer, processors, and consumer are not synchronized, solving the problem
of too much data by blocking until each one is ready to process it is not an option, as
it would transform the system into a synchronous one. Discarding it is not an option
either, and buffering is, well, unpredictable, so all we're left with for a reactive system is
applying non-blocking back-pressure.

Writing applications that can be aggregated in reactive systems was not possible in
Java before version 9, so developers had to make do with external libraries. A reactive
application must be designed according to principle of reactive programming and use
reactive streams for handling the data. The standard API for reactive programming was
first described by the reactive-streams library that could be used with Java 8 as well.
Butin Java 9, the standard APIwas added to the JDK. Figure 12-4 shows the interfaces
that are meant to be implemented by components with the roles defined previously. The
reactive streams API is made of four very simple interfaces.

4 reactive-streams-1.0.2.jar JDK+

4 META-INF Flow
j org.reactivestreams /\ ? ?
1, Processor «— Processor
]
\ Subscnber

i = Processor

1, Publisher €— Producer PUh' sher # g Suusmpnen
1, Subscriber «——— Consumer : | =
1, Subscription<— Link between Publisher and Consumer\ I ! |

Figure 12-4. Reactive Streams interfaces

o interface Publisher<T> exposes one method named
subscribe(Subscriber<? extendsT») thatis called to add a
Subscriber instance and produces elements of type T, which are
consumed by the Subscriber.

o interface Subscriber<R>, consumes elements from the Publisher
and exposes four methods that must be implemented to define
concrete behavior of the instance depending on the event type
received by the Publisher instance.

— void onSubscribe(Subscription) is the first method called on a
subscriber and this is the method that links the Publisher to the
Subscriber instance using the Subscription argument, if this method
throws an exception the following behavior is not guaranteed.

534

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

— void onNext(T) is the method invoked with a Subscription’s next item to
receive the data, if it throws an exception, the Subscription might be
cancelled.

— void onError(Throwable) is the method invoked upon an unrecoverable
error encountered by a Publisher or Subscription.

— void onComplete()is the method called when there is not more data to
consume, thus no additional Subscriber method invocations occur.

e interface Processor<T,R> extends both Publisher<T» and
Subscriber<R>, because it needs to consume data and produce it to
send it further upstream.

o interface Subscription, its implementation should link the
Publisher and the Subscriber and can be used to apply back-
pressure by calling the request(long) to set he number of items to
be produced and sent to the consumer. It also allows the cancellation
of a flow by calling the cancel() method to tell a Subscriber to stop

receiving messages.

In the JDK, all the previously listed interfaces are defined within the java.util.
concurrent.Flow class. The name of this class is obvious in nature, as the previous
interfaces are used to create flow-controlled components that can be linked together
to create a reactive application. Aside from these four interfaces, there is a single
JDK implementation, the java.util.concurrent.SubmissionPublisher<T> class
implementing Publisher<T> that is a convenient base for subclasses that generate items
and use the methods in this class to publish them.

The Flow interfaces are basic and can be used when writing reactive applications,
but this requires a lot of work. Currently, there are multiple implementations by
various teams that provide a more practical way to develop reactive applications. Using
implementations of these interfaces, you can write reactive applications without needing
to write the logic for synchronization of threads processing the data.

The following list is of the most well-known reactive streams API implementations.

o Project Reactor (https://projectreactor.io/) embraced by Spring
for its Web Reactive Framework

o Akka Streams (https://doc.akka.io/docs/akka/current/stream/
stream-flows-and-basics.html)

535

https://projectreactor.io/
https://doc.akka.io/docs/akka/current/stream/stream-flows-and-basics.html
https://doc.akka.io/docs/akka/current/stream/stream-flows-and-basics.html

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

o MongoDB Reactive Streams Java Driver (http://mongodb.github.io/
mongo-java-driver-reactivestreams/1.9/)

o Ratpack (https://ratpack.io/)
o RxJava (http://reactivex.io/)

And there are more, because in a big data world, reactive data processing is no
longer a luxury, but a necessity.

This concludes the introduction into what reactive programming and what reactive
streams are. It is about time we get down to the code.

Using the JDK Reactive Streams API

As the JDK provided interfaces for reactive programming are quite basic, implementing
them to build something really useful is quite cumbersome, but nevertheless we will try.
In this section, an application that generates an infinite number of integer values, filters
these values, and selects the ones that are smaller than 127 is being built. For the ones
that are even and between 98 and 122, we subtract 32 (basically converting small letters
to uppercase). Then we convert them to a character and print them.

Clearly, the most basic solution is

private static final Logger log = LoggerFactory.getlLogger(ReactiveMain.class);
private static final Random random = new Random();

public static void main(String... args) {

while (true){

int rndNo = random.nextInt(150);

if (rndNo »=0 && rndNo < 127) {
log.info("Initial value: {} ", rndNo);
if(rndNo % 2 == 0 && rndNo >=98 && rndNo <=122) {

rndNo -=32;

}
char res = (char) rndNo;
log.info("Result: {}", res);

536

http://mongodb.github.io/mongo-java-driver-reactivestreams/1.9/
http://mongodb.github.io/mongo-java-driver-reactivestreams/1.9/
https://ratpack.io/
http://reactivex.io/

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

} else {
log.debug("Number {} discarded.”, rndNo);

Each line of code in the previous code listing has a purpose, a desired outcome.

This approach is called imperative programming, because it sequentially executes a

series of statements to produce a desired output.

But this is not what we are aiming for. In this section, we implement a reactive

solution using implementations of the JDK reactive interfaces. So we’ll need the

following.

A publisher component that makes use of an infinite stream to
generate random integer values. The class should implement the
Flow.Publisher<Integer> interface.

A processor that selects only integer values that can be converted
to visible characters, let’s say all characters with codes between
[0,127). The class should implement the Flow.Processor<Integer,
Integer>.

A processor that modifies elements received, that are even, and
between 98 and 122, by subtracting 32. This class should also
implement the Flow.Processor<Integer, Integer>.

A processor that transforms integer elements into the equivalent
characters. This is a special type of processor that maps one
value to another, of another type and should implement
Flow.Processor<Integer, Character>.

A subscriber that prints the received elements from the
last processor in the chain. This class implements the
Flow.Subscriber<Character> interface.

Let’s start by declaring the Publisher that wraps around an infinite stream to

produce values to be consumed. We implement the Flow.Publisher<Integer>

interface, but provide a full concrete implementation to submit the elements

asynchronously. To buffer them in case of need is a little much, so we’ll make use of Subm
issionPublisher<Integer> in our class. The code for the publisher is depicted next.

537

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK
package com.apress.bgn.chi2.jdkstreams;

import java.util.Random;

import java.util.concurrent.Flow;

import java.util.concurrent.SubmissionPublisher;
import java.util.stream.IntStream;

public class IntPublisher implements Flow.Publisher<Integer> {

private static final Random random = new Random();
private final IntStream intStream = IntStream.generate(() -> random.
nextInt(150));

private final SubmissionPublisher<Integer>

submissionPublisher = new SubmissionPublisher<>();

@verride
public void subscribe(Flow.Subscriber<? super Integer> subscriber) {
submissionPublisher.subscribe(subscriber);

}

public void start() {
intStream.forEach(element -> {
submissionPublisher.submit(element);

sleep();
D;
}
private void sleep() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
throw new RuntimeException("could not sleep!");
}
}

538

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

As expected, we've provided an implementation for the subscribe() method, and
in this case, we have to forward the subscriber to the internal submissionPublisher.
Also, we've added a start() method that takes elements from the infinite IntStream
and submits them using the internal submissionPublisher. The IntStream makes use
of a Random instance to generate integer values in the [0,150] interval. This interval was
chosen so we can see how values bigger than 127 are discarded by the first Processor
instance connected to the publisher. To slow down the elements’ submission, we added
a call to Thread. sleep(1000) that basically guarantees one element per second is send
up the chain.

The name of the first processor is FilterCharProcessor and makes use of an internal
SubmissionPublisher<Integer> instance to send the elements it processes onward to
the next processor. Exceptions thrown are forwarded using the SubmissionPublisher
<Integer> also. The processor acts as a publisher, but as a subscriber as well, so the
implementation on the onNext (. .) method has to include a call to subscription.
request(..) to apply back pressure. From the figures presented earlier in the chapter,
you could see that the processor is basically a component that allows data flow in both
directions, and it does that by implementing both Publisher and Subscriber.

The processor must subscribe to the publisher, and when the publisher’s
subscribe(..) method is called, it causes the onSubscribe (Flow.Subscription
subscription) method to be invoked. The subscription must be stored locally, so that
it can be used to apply back pressure. But when accepting a subscription, we must make
sure that the field was not already initialized, because according to reactive streams
specification there can only be one subscriber for a publisher; otherwise, the results are
unpredictable. So if and when a new subscription arrives, it must be cancelled, and this
is done by calling cancel(). The full code for the processor is depicted next.

package com.apress.bgn.ch12.jdkstreams;

import com.apress.bgn.ch12.dummy.BasicIntTransformer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.concurrent.Flow;
import java.util.concurrent.SubmissionPublisher;

539

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

public class FilterCharProcessor implements
Flow.Processor<Integer, Integer> {

private static final Logger log =
LoggerFactory.getLogger(FilterCharProcessor.class);
private final SubmissionPublisher<Integer>
submissionPublisher = new SubmissionPublisher<>();
private Flow.Subscription subscription;

@verride
public void subscribe(Flow.Subscriber<? super Integer> subscriber) {
submissionPublisher.subscribe(subscriber);

}

@verride
public void onSubscribe(Flow.Subscription subscription) {
if (this.subscription == null) {
this.subscription = subscription;
// apply back pressure - request one element
this.subscription.request(1);
} else {
subscription.cancel();

}

@verride
public void onNext(Integer element) {
if (element >=0 && element < 127){

submit(element);
} else {
log.debug("Element {} discarded.", element);
}
subscription.request(1);
}
@verride

public void onError(Throwable throwable) {
submissionPublisher.closeExceptionally(throwable);

540

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

@verride
public void onComplete() {
submissionPublisher.close();

}

protected void submit(Integer element){
submissionPublisher.submit(element);

We have three processor classes to build, and aside from the code in the
onNext(..) method body, the rest is boilerplate code that allows processor instances
to be linked together in the flow we are designing. So it would be practical to wrap up
this code in an AbstractProcessor that all processors needed for this solution can
extend. As the last processor we need to implement needs to convert the received
Integer value to a Character we keep this implementation generic regarding to the
type of value being sent to the next processor or subscriber in the flow. The code is
depicted next.

package com.apress.bgn.ch12.jdkstreams;

import java.util.concurrent.Flow;
import java.util.concurrent.SubmissionPublisher;

public abstract class AbstractProcessor<T>
implements Flow.Processor<Integer, T> {

protected final SubmissionPublisher<T>
submissionPublisher = new SubmissionPublisher<>();
protected Flow.Subscription subscription;

@verride
public void subscribe(Flow.Subscriber<? super T> subscriber) {
submissionPublisher.subscribe(subscriber);

541

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

@verride
public void onSubscribe(Flow.Subscription subscription) {
if (this.subscription == null) {
this.subscription = subscription;
// apply back pressure - ask one or more than one
this.subscription.request(1);
} else {
subscription.cancel();

}

@verride
public void onError(Throwable throwable) {
submissionPublisher.closeExceptionally(throwable);

}

@verride
public void onComplete() {
submissionPublisher.close();

}

protected void submit(T element) {
submissionPublisher.submit(element);

This simplifies a lot the implementation of the FilterCharProcessor and the other
processors as well.

package com.apress.bgn.ch12.jdkstreams;

import org.slf4j.Logger;
import org.slf4j.lLoggerFactory;

public class FilterCharProcessor extends AbstractProcessor<Integer> {
private static final Logger log =
LoggerFactory.getLogger(FilterCharProcessor.class);

542

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

@verride
public void onNext(Integer element) {
if (element >= 0 && element < 127) {
submit(element);
} else {
log.debug("Element {} discarded.", element);
}

subscription.request(1);

We have a publisher and a processor, now what ? We connect them of course. The
dots (.. .) in the next code snippet, replace all the processors and the subscribers being
connected to each other later in the chapter.

package com.apress.bgn.ch12.jdkstreams;

public class ReactiveDemo {
public static void main(String... args) {
IntPublisher publisher = new IntPublisher();
FilterCharProcessor filterCharProcessor = new
FilterCharProcessor();

publisher.subscribe(filterCharProcessor);

publisher.start();

The next processor implementation is the one that transforms lower case letters
into upper case letters by subtracting 32. It can be easily implemented by extending
AbstractProcessor as well.

package com.apress.bgn.ch12.jdkstreams;

public class TransformerProcessor extends
AbstractProcessor<Integer> {

543

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

@verride
public void onNext(Integer element) {
if(element % 2 == 0 && element >=98 8& element <=122) {
element -=32;
}
submit(element);
subscription.request(1);

To plug in this processor into the flow, we need instantiate it and call the
filterCharProcessor.subscribe(..) and provide this instance as an argument.

package com.apress.bgn.ch12.jdkstreams;

public class ReactiveDemo {
public static void main(String... args) {
IntPublisher publisher = new IntPublisher();
FilterCharProcessor filterCharProcessor = new
FilterCharProcessor();
TransformerProcessor transformerProcessor = new
TransformerProcessor();

publisher.subscribe(filterCharProcessor);
filterCharProcessor.subscribe(transformerProcessor);

publisher.start();

The next one to implement is the final processor needed for the solution. It converts
an Integer value to a Character value. To keep the implementation as declarative as
possible, the processor is provided the mapping function as an argument.

544

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK
package com.apress.bgn.chi2.jdkstreams;
import java.util.function.Function;

public class MappingProcessor extends
AbstractProcessor<Character> {
private final Function<Integer, Character> function;

public MappingProcessor(Function<Integer, Character> function) {
this.function = function;

}

@verride

public void onNext(Integer element) {
submit(function.apply(element));
subscription.request(1);

And now, to plug itin.
package com.apress.bgn.ch12.jdkstreams;

public class ReactiveDemo {
public static void main(String... args) {

IntPublisher publisher = new IntPublisher();

FilterCharProcessor filterCharProcessor = new FilterCharProcessor();
TransformerProcessor transformerProcessor = new
TransformerProcessor();

MappingProcessor mappingProcessor =
new MappingProcessor(element -> (char) element.intValue());

publisher.subscribe(filterCharProcessor);
filterCharProcessor.subscribe(transformerProcessor);
transformerProcessor.subscribe(mappingProcessor);

publisher.start();

545

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

The last component of this flow is the subscriber that does nothing more than print
the values received from the transformerProcessor. The class implements the Flow.
Subscriber<Character> and most of it is identical to the code we've isolated in the
AbstractProcessor, but it is what it is.

package com.apress.bgn.ch12.jdkstreams;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.concurrent.Flow;

public class CharPrinter implements Flow.Subscriber<Character> {
private static final Logger log =
LoggerFactory.getLogger(CharPrinter.class);
private Flow.Subscription subscription;

@verride
public void onSubscribe(Flow.Subscription subscription) {
if (this.subscription == null) {
this.subscription = subscription;
this.subscription.request(1);
} else {
subscription.cancel();

}

@Override

public void onNext(Character element) {
log.info("Result: {}", element);
//apply back-pressure again
subscription.request(1);

}

@verride
public void onError(Throwable throwable) {
log.error("Something went wrong.", throwable);

546

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

@verride

public void onComplete() {

log.info("Printing complete.");

So now that we have a subscriber, we can plug it in and run the application.

package com.apress.bgn.ch12.jdkstreams;

public class ReactiveDemo {
public static void main(String... args) {

IntPublisher publisher = new IntPublisher();
FilterCharProcessor filterCharProcessor = new FilterCharProcessor();
TransformerProcessor transformerProcessor = new
TransformerProcessor();
MappingProcessor mappingProcessor =

new MappingProcessor(element -> (char) element.intValue());
CharPrinter charPrinter = new CharPrinter();

publisher.subscribe(filterCharProcessor);
filterCharProcessor.subscribe(transformerProcessor);
transformerProcessor.subscribe(mappingProcessor);
mappingProcessor.subscribe(charPrinter);
publisher.start();

It would be nice if the subscribe method returns the caller instance so we could

chain the subscribe(..) calls, but we work with what is provided for us. When the

previous code is run, a log similar to the following is printed in the console.

DEBUG
INFO
INFO
INFO
INFO

0o NN N N

.a.b.c.j.FilterCharProcessor - Element 149 discarded.
.a.b.c.j.CharPrinter - Result: >
.a.b.c.j.CharPrinter - Result: B
.a.b.c.j.CharPrinter - Result: 4
.a.b.c.j.CharPrinter - Result: Z

547

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

INFO c.a.b.c.j.CharPrinter - Result: *
INFO c.a.b.c.j.CharPrinter - Result: o
DEBUG c.a.b.c.j.FilterCharProcessor - Element 141 discarded.
INFO c.a.b.c.j.CharPrinter - Result: 4
DEBUG c.a.b.c.j.FilterCharProcessor - Element 142 discarded.
INFO c.a.b.c.j.CharPrinter - Result: Q
DEBUG c.a.b.c.j.FilterCharProcessor - Element 132 discarded.

The example uses an infinite IntStream to generate elements to be published,
processed, and consumed. This leads to the execution program running forever, so you
have to stop it manually. Another consequence of this is that the onComplete() methods
will never be called. If we want to use them, we have to make sure the number of items
being published is a finite one.

The support for reactive streams is thin in the JDK, even in version 11, released
September 23, 2018. It was expected that more useful classes would be added in versions
following Java 9, but apparently Oracle is focused on other aspects, such as reorganizing
the module structure and deciding how to better monetize usage of the JDK, because
two releases after there’s still nothing new on the reactive front. That is why the next
section covers a short example of reactive programming done with the Project Reactor
library.

Reactive Streams Technology Compatibility Kit

When building applications that use reactive streams a lot of things can go wrong. To
make sure that you are building a proper reactive application, you can use the Reactive
Streams Technology Compatibility Kit project (also known as TCK) to write tests.

This library contains classes that can test reactive implementations against the reactive
streams specifications. TCK is intended to verify the interfaces contained in Java 9 (under
java.util.concurrent.Flow.*) and for some reason the team that created the library
decided to use TestNG as a testing library. The project sources are available on GitHub at
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/
tck-flow, which contains four classes that have to be implemented to provide their

548

https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck-flow
https://github.com/reactive-streams/reactive-streams-jvm/tree/master/tck-flow

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

Flow.Publisher, Flow.Subscriber, Flow.Processor implementations for the test
harness to validate. The four classes are

e FlowPublisherVerification tests Publisher implementations.

o FlowSubscriberWhiteboxVerification is used for whitebox testing
Subscriber implementations and Subscription instances.

e FlowSubscriberBlackboxVerification is used for blackbox testing
Subscriber implementations and Subscription instances.

o IdentityFlowProcessorVerification tests Processor
implementations.

To make the purpose of each test clear, the library test methods names follow this
pattern: TYPE spec#### DESC where TYPE is one of required, optional, stochastic, or
untested, which refers to the importance of the rule being tested, the number signs in
speci#iit# represent the rule number with the first one being 1 for Publisher instances
and the 2 for Subscribers and the DESC is a short explanation of the test purpose.

Let’s see how we could test the IntPublisher that we defined previously. For this,
we’'ll modify this class to allow the class to use a limited IntStreamas a source.

package com.apress.bgn.ch12.jdkstreams;

import java.util.Random;

import java.util.concurrent.Flow;

import java.util.concurrent.SubmissionPublisher;
import java.util.stream.IntStream;

public class IntPublisher implements Flow.Publisher<Integer> {
private static final Random random = new Random();
protected final IntStream intStream;

public IntPublisher(int limit) {
intStream = limit == 0 ? IntStream.generate(() -> random.
nextInt(150)) :
IntStream.generate(() -> random.nextInt(150)).1imit(30);

549

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

We also need to provide access to the stream source of the IntStream so we can use

itin our test. Now let’s test our publisher by implementing the FlowPublisherVerificat
ion<Integer>.

package com.apress.bgn.ch12.jdkstreams;

import org.reactivestreams.tck.TestEnvironment;

import org.reactivestreams.tck.flow.FlowPublisherVerification;
import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.util.concurrent.Flow;

public class IntPublisherTest extends FlowPublisherVerification<Integer> {

550

private static final Logger log =
LoggerFactory.getlLogger(FilterCharProcessor.class);

public IntPublisherTest() {
super (new TestEnvironment(300));

}

@verride
public Flow.Publisher<Integer> createFlowPublisher(final long elements) {
return new IntPublisher(30) {
@verride
public void subscribe(Flow.Subscriber<? super Integer>
subscriber) {
intStream.forEach(subscriber: :onNext);
subscriber.onComplete();

b
}

@verride
public Flow.Publisher<Integer> createFailedFlowPublisher() {
return new IntPublisher(0) {
@verride
public void subscribe(Flow.Subscriber<? super Integer>
subscriber) {

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

subscriber.onError(new RuntimeException(
"There be dragons!"));

To make it clear, a Publisher implementation might not pass all the tests, because
of design decisions that are specific to the application you are building. In our case,
the IntPublisher is simplistic; and when running the createFlowPublisher method
of all the executed tests, not many of them pass and most are ignored, as depicted in
Figure 12-5.

@ & W java-ban [~/apress/work fi ban] - .../[chapter12/sreftestfjaval fi fban/ch 2fidkstreams/intPublisherTest java [chapter12_test]
% java-bgn) By chapter12) bw src) I test) i java) D com) [n aprass bon) Emchi2) B A\ IntPublisherTest (4) + b & G Git: o

Project = 3 = @ — & intPublisherTest]avs
el 38 EaUINOr IUTIang Losming
~ WG chapteri2 « @since 1.0
r build 1 =/
T

out i1 % public class IntPublisherTest extends FlowPublisherVerification<Integer= {
42 private static final Logger log = LoggerFactory.getLogger{FilterCharProcessor.class);

I 3: Project

v src

B Learm

M .mafn 44 4 public IntPublisherTest() { super({new Tes‘lEr‘lironnent[defaultTimeoutMillis: 300));)
v e java 4
b com.apress.b 4 @0verride
» dummy | 45 of public Flow.Publisher<Integer> createFlowPublisher(final long elements) {
w % jdkstreams ¢ return new IntPublisher(limit 30) {
@0verride

€ Abstrac ~~
a1 auhlir unid coherrihalFlaw Suherrihare? cunar Tntanors coherriharl &

€ CharPri IntPublisherTest + IntPublisherTest()
Run: IntPublisher Test {4)
v i ZT 24208 © Tests failed: 21, passed: 3, ignored: 14 of 38 tests — 75 667 ms

required_spec109_mayRejectCallsToSubscribelfPublisher 5
required_spec109_mustissueOnSubscribeForNonNuliSul 204

+ required_speci09_subscribeThrowNPEOnNullSubscriber

© required_spec302_mustAllowSynchronousRequestCallsFro 1o

@ required_spec303_mustNotAllowUnboundedRecursion
required_spec306_afterSubscriptionisCancelledRequest! z04
required_spec307_afterSubscriptionisCancelledAddition;
required_spec309_requestNegativeNumberMustSignallll 3¢

= required_spec309_requestZeroMustSignallllegalArgumer 302 m

required_spec312_cancelMustMakeThePublisherToEvent 307 n

» required_spec313_cancelMustMakeThePublisherEventua
required_spec317_mustNotSignalOnErrorWhenPending#
required_spec317_mustSupportACumulativePendingElen
required_spec317_mustSupportAPendingElementCountl

+ required varadate,boundodbapmomnNmmndkoquumoc 1ms
required_valid lementsFromPublisher

© stochastic_speci03_mustSignalOnMethodsSequentially

@B Vv

2. 7: Structure

Figure 12-5. Test NG Reactive Publisher

The reason tests do not pass or are ignored is that the purpose of our
implementation does not match those specific tests (e.g., maySupportMultiSubscribe,
maySignallessThanRequestedAndTerminateSubscription, and mustSignalOn
MethodsSequentially).

551

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

We can test the processor and subscriber that we defined in the previous section by
extending the testing classes, but I'll leave that as an exercise to you, because there is one
more interesting thing I would like to cover in this chapter.

Using Project Reactor

As I've mentioned, the JDK support for reactive programming is scarce. Publishers,
processors, and subscribers should function asynchronously and all that behavior must
be implemented by the developer, which can be a bit of a pain. The only thing that the
JDK is suitable for at the moment is providing a common interface between all the other
already existing implementations. And there are a lot of them, providing a lot more
useful classes for more specialized reactive components and utility methods to create
and connect them easier. The one I personally fancy the most as a Spring aficionado is
Project Reactor, the same one favored by the Spring development team.

Project Reactor is one of the first libraries for reactive programming and its classes
provide a non-blocking stable foundation with efficient demand management for
building reactive applications. It works with Java 8, but does provide adapter classes for
JDK9 reactive streams classes that can be used within a JDK 11 project as well. Project
Reactor is suitable for microservices applications and provides a lot more classes
designed to make programming reactive application more practical than the JDK
does. Project Reactor provides two main publisher implementations: reactor. core.
publisher.Mono<T> which is a reactive stream publisher limited to publishing zero or one
element and reactor.core.publisher.Flux<T>, which is a reactive stream publisher
with basic flow operators.

The advantage of using Project Reactor is that we have a lot more classes and
methods to work with. There are static factories that can create publishers and methods
that allow operations to be chained way more easily.

The Project Reactor team did not like the name Processor, so the intermediary
components are called operators.

If you look in the official documentation, you will most likely encounter the schema
in Figure 12-6 .2

SImage source: Project Reactor Public API JavaDoc http://projectreactor.io/docs/core/
release/api/reactor/core/ publisher/Flux.html

552

http://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
http://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
http://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

These are items emitted by
the Flux.

Figure 12-6. Project Reactor Flux Publisher implementation

Figure 12-6 is an abstract schema of how the Flux publisher works. It emits elements,
throws exceptions, and completes when there are no more elements to publish. The
Project Reactor team found a prettier way to draw it.

The drawing for the Mono implementation is similar (see http://projectreactor.
io/docs/core/release/api/reactor/core/publisher/Mono.html).

But let’s put that aside and look at a few code samples. Creating Flux instances is
very easy using the multiple utility methods in this class. But before starting to publish
elements, let’s design a general subscriber that does nothing else than print values,
because we need it to make sure our Flux publisher actually works.

To write a subscriber using Project Reactor API, you have multiple options. You can
implement the org.reactivestreams.Subscriber<T> directly.

package com.apress.bgn.chi2.reactor;

import org.reactivestreams.Subscriber;

import org.reactivestreams.Subscription;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class GenericSubscriber<T> implements Subscriber<T> {
private static final Logger log =
LoggerFactory.getLogger(GenericSubscriber.class);
private Subscription subscription;
@verride

553

http://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

public void onSubscribe(Subscription subscription) {
if (this.subscription == null) {
this.subscription = subscription;
this.subscription.request(1);
} else {
subscription.cancel();

}

@verride

public void onNext(T element) {
log.info("consumed {} ", element);
subscription.request(1);

}

@0verride
public void onError(Throwable t) {
log.error("Unexpected issue!", t);

}

@Override
public void onComplete() {
log.info("All done!");

But, this can be avoided by either implementing reactor.core.CoreSubscriber<T>,
the reactor base interface for subscribers, or even better, by extending
BaseSubscriber<T> class, which provides basic subscriber functionality. The behavior
of subscriber typical methods can be modified by overriding methods with then same
name, but prefixed with hook. In the next code snippet, you can see how easy it is to write
a subscriber using Project Reactor.

package com.apress.bgn.ch12.reactor;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import reactor.core.publisher.BaseSubscriber;

554

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

public class GenericSubscriber<T> extends BaseSubscriber<T> {

private static final Logger log =
LoggerFactory.getLogger(GenericSubscriber.class);

@Override

protected void hookOnNext(T value) {
log.info("consumed {} ", value);
super.hookOnNext (value);

Ta, da! Now we have a subscriber class, let’s create a reactive publisher that serves
integers from an infinite integer stream to use an instance of this class.

package com.apress.bgn.chi2.reactor;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import reactor.core.publisher.Flux;

import java.util.Random;
import java.util.stream.Stream;

public class ReactorDemo {
private static final Logger log = LoggerFactory.getlLogger(ReactorDemo.
class);
private static final Random random = new Random();

public static void main(String... args) {
Flux<Integer> intFlux = Flux.fromStream(
Stream.generate(() -> random.nextInt(150))

)5

intFlux.subscribe(new GenericSubscriber<>());

555

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

If you run the code, you see that all the generated integer values are printed. A Flux
can be created from a multiple of sources, including arrays and other publishers. And
for special situations, to avoid returning a null value, an empty Flux can be created by
calling the empty() method.

String[] names = {"Joy", "John", "Anemona", "Takeshi"};
Flux.fromArray(names).subscribe(new GenericSubscriber<>());

Flux<Integer> intFlux = Flux.empty();
intFlux.subscribe(new GenericSubscriber<>());

But the most awesome method is named just(..) and it is provided for Flux
and Mono both. It takes one or more values and returns a publisher, a F1ux or a Mono,
depending on the type being called on.

Flux<String> dummyStr = Flux.just("one", "two", "three");
Flux<Integer> dummyInt = Flux.just(1,2,3);

Mono<Integer> one = Mono.just(1);
Mono<String> empty = Mono.empty();

Another method that you might find useful is concat (), which allows us to
concatenate two Flux instances.

String[] names = {"Joy", "John", "Anemona", "Takeshi"};
Flux<String> namesFlux = Flux.fromArray(names);

String[] names2 = {"Hanna", "Eugen", "Anthony", "David"};
Flux<String> names2Flux = Flux.fromArray(names2);
Flux<String> combined = Flux.concat(namesFlux, names2Flux);
combined.subscribe(new GenericSubscriber<>());

And another thing that you might like, remember how the IntPublisher class had to
be slowed down using a Thread.sleep(1000) call? With Flux you do not need to do that,
because there are two utility methods that combined lead to the same behavior.

Flux<Integer> infiniteFlux = Flux.fromStream(
Stream.generate(() -> random.nextInt(150))

)5

556

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

Flux<Long> delay = Flux.interval(Duration.ofSeconds(1));
Flux<Integer> delayedInfiniteFlux = infiniteFlux.zipWith(delay, (s,1) -> s);
delayedInfiniteFlux.subscribe(new GenericSubscriber<>());

The interval(..) method creates a publisher that emits long values starting with 0
incrementing at specified time intervals on the global timer. It receives an argument of
type Duration. In the previous example, seconds were used. The zipWith(..) method
zips the Flux instance received as a parameter. The zip operation is a specific stream
operation that translates as both publishers emitting one element and combining these
elements using a java.util.function.BiFunction<T, U, R>.In our case, the function
discards the seconds element, and returns the elements of the calling stream slowed
down by the generated seconds of the stream given as an argument.

The good part about the components provided by Project Reactor is that they return
mostly the same type of objects they are being called on and this means they can be
easily chained. A reactive piece of code equivalent to the previously JDK-based example
can be written with reactor API as follows.

Flux<Integer> infiniteFlux = Flux.fromStream(
Stream.generate(() -> random.nextInt(150))

)s

Flux<Long> delay = Flux.interval(Duration.ofSeconds(1));
Flux<Integer> delayedInfiniteFlux =
infiniteFlux.zipWith(delay, (s, 1) -> s);

delayedInfiniteFlux
.filter(element -> (element >= 0 8& element < 127))
.map(item -> {
if (item % 2 == 0 && item >= 98 && item <= 122) {
item -= 32;
}
return item; })
.map(element -> (char) element.intValue())
.subscribe(new GenericSubscriber<>());

557

CHAPTER 12 THE PUBLISH/SUBSCRIBE FRAMEWORK

Most functions that you remember from the Stream API have been implemented for
areactive usage in Project Reactor, so if this code seems familiar, this is the reason why.

As proven with the code samples in this section, programming using reactive streams
is way more practical using the Project Reactor AP], so if you are ever in need of a
reactive library you could consider this one first. You can find the official documentation
athttp://projectreactor.io/docs/core/milestone/reference/, it’s good and full of
examples. If ever Oracle decides to provide their own rich API for programming reactive
applications using reactive streams, they will probably be too late to the table.

Summary

Reactive programming is not an easy topic, but it does seem to be the future of
programming. What you have to keep in mind is that reactive implementations are quite
useless with implementations that are not reactive. I mean, there is no use to design and
use reactive components with non-reactive components, because you might introduce
failure points and slow things down. For example, if you are using an Oracle database,
there is no point in defining a repository class that returns elements using reactive
streams, because an Oracle database does not support reactive access. So you add a
reactive layer that provides extra implementation, because there are no real benefits in
this case. But if your database of choice is MongoDB, you can use reactive programming
confidently, because MongoDB databases support reactive access. Also, if you are
building a web application with a React]S or angular interface, you can design your
controller classes to provide data reactively to be displayed by the interface.

This chapter covered

e reactive programming

o the behavior of reactive streams

o JDKreactive streams support

» the Reactive Streams Technology Compatibility Kit

o Project Reactor components

558

http://projectreactor.io/docs/core/milestone/reference/

CHAPTER 13

Garbage Collection

When executing Java code, objects are created, used and discarded repeatedly from
memory. The process through which unused Java objects are discarded is called
memory management, but is most commonly known as garbage collection (GC).
garbage collection was mentioned in Chapter 5 as it was needed for explaining the
difference between primitive and reference types, but in this chapter we go deep
under the hood of the JVM to resolve yet another mystery of a running Java application.
When the Java garbage collector does its job properly, the memory is cleaned up,
before new objects are created and it does not fill up, so you could say that the memory
allocated to a program is recycled. Programs of low complexity, like the ones we've
been writing so far do not require that much memory to function, but depending on
their design (remember recursivity?) they could end up using more memory than it
is available to them. In Java, the garbage collector runs automatically. In more low
level languages, like C there is no automatic memory management, and the developer
is responsible for writing the code to allocate memory as needed, and deallocate it
when it is no longer needed. Although it seems practical to have automatic memory
management, the garbage collector can be a problem if managed incorrectly. So this
chapter provides enough information about the garbage collector to make sure it is used
wisely, and when problems arise, at least you have a good place to start solving them.
Although some ways to tune the garbage collector will be covered in this chapter
introduced, keep in mind that garbage collection tuning should not be necessary, a
program should be written in such a way that creates only objects that are needed to
perform its function and references are managed correctly, estimations should be done
before the application is put into production and the maximum amount of memory
needed by it should be known and configured before that. If the memory allocated to a
Java program is not enough, there is usually something rotten in the implementation.

559

© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_13

CHAPTER 13 GARBAGE COLLECTION

Garbage Collection Basics

The Java automatic garbage collection is one of the major features of the of the Java
Programming language. The JVM is a virtual machine used to execute Java programs.
As the Java programs uses resources of the system the JVM is running on top of, it has to
have a way to release those resources safely. This job is done by the garbage collector.
To understand the garbage collector, we have to take a look at the JVM architecture.

Oracle Hotspot JVM Architecture

Over the years, some big companies have produced their own variations of the JVM
(e.g., IBM) and now that Java is moving into the module age and rapid delivery style,
more and more companies appear that maintain a specific version of the JDK/JVM
(e.g., Azul), because migration to 9+ is difficult for big applications with legacy
dependencies. Also, another important economic factor here is that Java is paid software
as of January 1, 2019, and developers have to pay for the software they have developed,
which many are going to call bait and switch as Oracle first said, Here it is free now use
it, and then, Now that you have developed your Java apps, you have to pay us. If you
think about it, it is the same thing as buying the ground your house is built on, and the
bricks, and everything else. Because the only thing that is yours when building a Java
application is the application purpose and the design; everything you are using to build
itis part of the JDK, which belongs to Oracle.

Still, Oracle’s HotSpot is by far the most commonly used JVM when it comes to
garbage collection. This JVM provides a mature set of garbage collection options. Its
architecture is depicted in Figure 13-1.

560

CHAPTER 13 GARBAGE COLLECTION

ClassLoader Subsystem
N —— '
! Method Java Program Native !

Area Heap Memory Threads Count Internal

Stack Stack Registers Threads

Stack
Runtime Data Areas
Native Native

) Method +— Method
Execution JT Garbage Interface Libraries
Engine Compiler Collector

Figure 13-1. Oracle HotSpot JVM Architecture

The heap memory area is managed by the garbage collector, and is split into multiple
zones. Objects are moved between these zones until being discarded. The zones are
depicted in Figure 13-2 for old-fashioned garbage collector and the new style of garbage
collector that follows the model of the current default garbage collector used by the JDK,
the G1GC, introduced in JDK 8.

561

CHAPTER 13 GARBAGE COLLECTION

Survivor
Space
Eden S0 S1 Tenured Permanent
| JL A J
T T T
Young Old Permanent
Generation Generation Generation

Older GCs: serial, parallel, CMS

o
o

m|io|o|m|O
m
O

G1GC

Figure 13-2. The heap structure

The G1GC is a next-generation garbage collector designed for machines with a lot of
resources, which is why its approach to the partitioning of the heap is different. Its heap
is partitioned into a set of equal-sized heap regions, each a contiguous range of virtual
memory. Certain region sets are assigned the same roles (Eden, survivor, old) as in the older
collectors, but there is not a fixed size for them. This provides greater flexibility in memory
usage. You can read more about the different types of garbage collectors in the next section,
for now the focus remain on the heap memory and its zones that are called generations.
When an application is running, objects created by it are stored in the young
generation area. When an object is created it starts its life in a subdivision of this
generation called the Eden space. When the Eden space is filled, this triggers a
minor garbage collection(minor GC run) that cleans up this area of unreferenced
objects, and moves referenced objects to the first survivor space (S0). The next time
the Eden space is filled, another minor GC run is triggered, which again deletes
unreferenced objects, and referenced objects are moved to the next survivor space (S1).
The objects in SO have been there for a minor GC run, so their age is incremented and
they are moved to S1, so SO and the Eden can be cleaned up. At the next minor GC run,

562

CHAPTER 13 GARBAGE COLLECTION

the operation is repeated again, but this time referenced objects are saved into the empty
S0 and the older objects form S1, have their age incremented and moved here as well,
so the S1 and Eden can be cleaned up. After the objects in survivor space reach a certain
age, they are moved to the old generation space during minor GC runs.

The previous steps are depicted in Figure 13-3, and the 01 and 02 objects age until
they are moved to the old generation area.

S0 S1
A A
I \l 1
___Objects o1 & 02 are
IEI ~ Just coming into
N) existence
v
Eden SO S1
I A
I W 1
= after minor GC run 1
[=] = -
| - J
{0] S1
Eden R i
: 2 T . after minor GC run 2
03 -
L= b B
L v] Aged objecls
Eden SO0 S1

| |

1
|
02 OSH_\ 05"]—\
I 4 1 o4 1 06 after minor GC run 4
T

-

) Oidest objects Aged objects

Eden 310 ﬁ1
f y \

after minor GC run n

L) Oidest objects Aged objects

Eden

I
Old
Generation

\

Figure 13-3. Minor GC runs in the young generation space

563

CHAPTER 13 GARBAGE COLLECTION

Minor GC collections happen until the old generation space is filled, which is when a
major garbage collection(major GC run) is triggered. That deletes unreferenced objects,
compacts the memory, and moves objects around so that the empty memory left is one
big compact space. The minor garbage collection event is a stop the world event, this
process basically takes over the run of the application and pauses its execution so it can
free the memory. As the young generation space is small in size (as you see in the next
section), the application pause is usually negligible. If no memory can be reclaimed from
the young generation area after a minor GC run takes place, a major GC run is triggered.

The permanent generation area is reserved for JVM metadata such as classes and
methods. This area is cleaned too from time to time to remove classes that are no longer
used in the application. The cleanup of this area is triggered when there is no more
available memory left in the heap.

The garbage collection process described up to this paragraph is specific to
generational garbage collectors, such as the G1GC; but before JDK 8, garbage collection
was done using an older garbage collector that uses an algorithm called Concurrent
Mark Sweep. This type of garbage collector runs in parallel with the application marking
used and unused zones of memory. Then it would delete unreferenced objects and
would compact the memory into a contiguous zone by moving objects around. This
process is inefficient and time consuming. Because as more and more objects were
created, the garbage collection takes more and more time to be performed. But as most
objects are short-lived, this is not really a problem. So the CMS garbage collector was OK
for a while.

The G1GC has a similar approach, but after the mark phase is finished, G1 focuses on
regions that are mostly empty to recover as much unused memory as possible. That is why
this garbage collector is also called garbage-first. G1 also uses a pause prediction model to
decide how many memory regions can be processed based on the pause time set for the
application. Objects from the processed region are copied to a single region of the heap,
thus realizing a memory compaction at the same time. Also G1GC does not have a fixed
size for the eden and survivor spaces, it decides their size after every minor GC run.

How Many Garbage Collectors Are There?

The Oracle HotSpot JVM provides the following types of garbage collectors:

o serial collector: All garbage collection events are conducted serially
in one thread. Memory compaction happens after each garbage
collection.

564

CHAPTER 13 GARBAGE COLLECTION

parallel collector: Multiple threads are used for minor garbage
collection. A single thread is used for a major garbage collection and
Old Generation compaction.

CMS (Concurrent Mark Sweep): Multiple threads are used for
minor garbage collection using the same algorithm as the parallel
GC. Major garbage collection is multithreaded, but CMS runs
concurrently alongside application processes to minimize stop the
world events. No memory compaction is done. This type of garbage
collector is suitable for applications requiring shorter garbage
collection pauses and that can afford to share processor resources
with the garbage collector while the application is running. This was
the default garbage collector until Java 8, when G1 was introduced
officially as default.

G1 (garbage first): Introduced in Oracle JDK 7, update 4, was
designed to permanently replace the CMS GC and is suitable for
applications that can operate concurrently with CMS collector, need
memory compaction, need more predictable GC pause durations,
and do not require a much larger heap. The G1 collector is a server-
style garbage collector, targeted for multiprocessor machines with
large memories, and considering that most laptops now have at
least eight cores and 16 GB RAM it is suitable for them. G1 has both
concurrent (runs along with application threads—e.g., refinement,
marking, cleanup) and parallel (multithreaded—e.g., stop the world)
phases. Full garbage collections are still single threaded, but if tuned
properly your applications should avoid full garbage collections.

Epsilon no-op collector: Introduced in Java 11, this type of collector
is a dummy GC that does not recycle or clean up the memory. When
the heap is full, the JVM shuts down. This type of collector can be
used for performance tests, for memory allocation analysis, VM
interface testing, and extremely short-lived jobs and applications
that are very limited when it comes to memory usage and developers
must estimate the application memory footprint as precisely

as possible.

565

CHAPTER 13 GARBAGE COLLECTION

OK, I've listed the garbage collector types, but how do we know which is the one
used by our local JVM? There is more than one way. The simplest way is to add the
-verbose:gc as a VM option when running a simple main class. Using Java 11 JDK,
without any other configuration will print this in the console.

[0.016s][info][gc] Using G1

So it’s clear; G1 garbage collector is used. We can see the details of this garbage
collector by adding another VM option: -Xlog:gc*".

[0.012s][info][gc,heap] Heap region size: 1M

[0.017s][info][gc] Using G1

[0.017s][info][gc,heap,coops] Heap address: 0x0000000700000000, size: 4096 MB,

Compressed Oops mode: Zero based, Oop shift amount: 3

[0.216s][info][gc,heap,exit] Heap

[0.216s][info][gc,heap,exit] garbage-first heap total 262144K, used 3072K
[0x0000000700000000, 0XOOOOOOO8000OOOOO)

[0.216s][info][gc,heap,exit] region size 1024K, 4 young (4096K), 0

survivors (0K)

[0.216s][info][gc,heap,exit] Metaspace used 7246K, capacity 7364K,

committed 7680K, reserved 1056768K

[0.216s][info][gc,heap,exit] class space used 663K, capacity 709K,

committed 768K, reserved 1048576K

Now we can see the heap maximum size (4096 GB), the memory region size (1 M),
and the size and occupation for each generation.

But we can tell JVM to use any of the garbage collectors listed previously by using
their specific VM options.

e -XX:+UseSerialGC to use the serial GC (in this case, adding
-verbose:gc -Xlog:gc* as the VM option) produces the following
output.

'This VM option replaces deprecated -XX:+PrintGCDetails

566

CHAPTER 13 GARBAGE COLLECTION

[0.012s][info][gc] Using Serial
[0.012s][info][gc,heap,coops] Heap address: 0x0000000700000000, size:
4096 MB,

Compressed Oops mode: Zero based, Oop shift amount: 3 [0.209s]
[info][gc,heap,exit] Heap
[0.209s][info][gc,heap,exit] def new generation total 78656K,
used 9794K

[0x0000000700000000, 0x0000000705550000, 0x0000000755550000)
[0.209s][info][gc,heap,exit] eden space 69952K, 14% used

[0x0000000700000000, 0x0000000700990808, 0X0000000704450000)
[0.209s][info][gc,heap,exit] from space 8704K, 0% used

[0x0000000704450000, 0x0000000704450000, 0x0000000704cd0000)
[0.209s][info][gc,heap,exit] to space 8704K, 0% used

[0x0000000704cd0000, 0x0000000704cd0000, 0x0000000705550000)
[0.209s][info][gc,heap,exit] tenured generation total 174784K,
used 0K

[0x0000000755550000, 0x0000000760000000, OXOOOOOOOSOOOOOOOO)
[0.209s][info][gc,heap,exit] the space 174784K, 0% used

[0x0000000755550000, 0x0000000755550000, 0x0000000755550200,

OXOOOOOOO76000OOOO)
[0.209s][info][gc,heap,exit] Metaspace used 7246K,
capacity 7364K, committed 7680K,

reserved 1056768K
[0.209s][info][gc,heap,exit] class space used 663K, capacity
709K, committed 768K,

reserved 1048576K

-XX:+UseParallelGC to use the serial GC (in this case, adding
-verbose:gc -Xlog:gc* as the VM option) produces the following
output.

[0.017s][info][gc] Using Parallel
[0.017s][info][gc,heap,coops] Heap address: 0x0000000700000000, size:
4096 MB,

Compressed Oops mode: Zero based, Oop shift amount: 3 [0.231s]
[info][gc,heap,exit] Heap

567

CHAPTER 13 GARBAGE COLLECTION

[0.231s][info][gc,heap,exit] PSYoungGen total 76288K, used 9175K
[OXOOOOOOO7aabOOOOO, 0x00000007b0000000, OXOOOOOOO8000OOOOO)
[0.231s][info][gc,heap,exit] eden space 65536K, 14% used
[0x00000007aab00000,0x00000007ab3f5f38,0x00000007aeb00000)
[0.231s][info][gc,heap,exit] from space 10752K, 0% used
[0x00000007a580000,0x00000007af580000,0x00000007b0000000)
[0.231s][info][gc,heap,exit] to space 10752K, 0% used
[0x00000007aeb00000, 0x00000007aeb00000,, 0x00000007af580000)
[0.231s][info][gc,heap,exit] Par0ldGen total 175104K, used 0K
[0X0000000700000000, 0x000000070ab00000, 0x00000007aab00000)
[0.231s][info][gc,heap,exit] object space 175104K, 0% used
[OXOOOOOOO7000OOOO0,0XOOOOOOO7000OOOO0,0X000000070ab00000)
[0.231s][info][gc,heap,exit] Metaspace used 7245K, capacity
7364K, committed 7680K,
reserved 1056768K
[0.231s][info][gc,heap,exit] class space used 663K, capacity
709K, committed 768K,
reserved 1048576K

o -XX:+UseConcMarkSweepGC to use the serial GC (in this case, adding
-verbose:gc -Xlog:gc* as the VM option) produces the following
output.

[0.018s][info][gc] Using Concurrent Mark Sweep
[0.018s][info][gc,heap,coops] Heap address: 0x0000000700000000,
size: 4096 MB,
Compressed Oops mode: Zero based, Oop shift amount: 3 [0.260s]
[info][gc,heap,exit] Heap
[0.260s][info][gc,heap,exit] par new generation total 78656K,
used 9794K
[0x0000000700000000, 0x0000000705550000, 0x0000000729990000)
[0.260s][info][gc,heap,exit] eden space 69952K, 14% used
[0X0000000700000000, 0X0000000700990850, 0Xx0000000704450000)
[0.260s][info][gc,heap,exit] from space 8704K, 0% used
[0x0000000704450000, 0x0000000704450000, 0x0000000704cd0000)
[0.260s][info][gc,heap,exit] to space 8704K, 0% used
[0x0000000704cd0000, 0x0000000704cd0000, 0X0000000705550000)

568

CHAPTER 13 GARBAGE COLLECTION

[0.260s][info][gc,heap,exit] concurrent mark-sweep generation total
174784K,
used 0K [0x0000000729990000, 0x0000000734440000,
OXOOOOOOOSOOOOOOOO)
[0.260s][info][gc,heap,exit] Metaspace used 7336K,
capacity 7428K, committed 7680K,
reserved 1056768K
[0.260s][info][gc,heap,exit] class space used 668K, capacity
709K, committed 768K,
reserved 1048576K

-XX:+UseG1GC, the default garbage collector, we already covered this one

-XX:+UseEpsilonGC, the no-op garbage collector. If you see a

message in the console that asks you to also add the -XX:+UnlockExp
erimentalVMOptions before the option to enable the Epsilon garbage
collector, do so. This VM option is needed to unlock experimental
features and at the moment when this book is being written this
garbage collector is an experimental feature. Adding -verbose:gc
-Xlog:gc* as the VM option produces the following output.

[0.013s][info][gc] Resizeable heap; starting at 256M, max: 4096M,
step: 128M
[0.013s][info][gc] Using TLAB allocation; max: 4096K
[0.013s][info][gc] Elastic TLABs enabled; elasticity: 1.10x
[0.013s][info][gc] Elastic TLABs decay enabled; decay time: 1000ms
[0.013s][info][gc] Using Epsilon
[0.013s][info][gc,heap,coops] Heap address: 0x0000000700000000, size:
4096 MB,
Compressed Oops mode: Zero based, Oop shift amount: 3 [0.213s]
[info][gc,heap,exit] Heap
[0.213s][info][gc,heap,exit] Epsilon Heap
[0.213s][info][gc,heap,exit] Allocation space:
[0.213s][info][gc,heap,exit] space 262144K, 1% used
[OXOOOOOOO7000OOOOO, 0x000000070030e80, OXOOOOOOO710000000)
[0.213s][info][gc] Total allocated: 3130 KB
[0.213s][info][gc] Average allocation rate: 14691 KB/sec

569

CHAPTER 13 GARBAGE COLLECTION

The data printed for these garbage collectors has common elements, such as the size
of heap, which is always 256 MB at the start of the application and has a maximum size of
4096 MB on my system. The eden and the young generation differ; the G1 uses 4096 KB
for the young generation, whereas the CMS requires 78656 KB (a lot more).

The most interesting is the Epislon garbage collector, because as expected, it does
not have a heap split into generation areas, as this type of garbage collector does not
perform garbage collection at all. The TLAB is an acronym for thread local allocation
buffer, which is the memory area where objects are stored. Only bigger objects are stored
outside of TLABs. The TLABs are dynamically resized during the execution for each
thread individually. So, if a thread allocates very much, the new TLABs that it gets from
the heap increase in size. The minimum size of a TLAB can be controlled using two VM
options: -XX:MinTLABSize.

For the small empty class that we ran with the previous VM options, this output is not
really relevant, but you can play with these options when running the code from the next
sections, because that is when the statistics printed here have some relevance.

Also, there is a VM option named -XX:+PrintCommandLineFlags that can be used
when a class is run to depict configurations of the garbage collector: the number of
threads it uses, heap size, and so on.

-XX:G1ConcRefinementThreads=8
-XX:GCDrainStackTargetSize=64
-XX:InitialHeapSize=268435456
-XX:MaxHeapSize=4294967296
-XX:+PrintCommandLineFlags
-XX:ReservedCodeCacheSize=251658240
-XX:+SegmentedCodeCache

-XX:+UseCompressedClassPointers
-XX:+UseCompressedOops -XX:
+UseG1GC

Most of these VM options have obvious names that allow a developer to infer
what they are used for. Also, there is the official documentation from Oracle. If you
ever need to dissect the Oracle memory management, the article at www.oracle.com/
technetwork/java/javase/tech/index-jsp-136373.html is very good.

570

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html

CHAPTER 13 GARBAGE COLLECTION

Working with GC from the Code

For most applications garbage collection is not something a developer must really take
into account. The JVM starts a GC thread that does its job without hindering the execution
of the application (usually). But for developers who want to have more than Java basic
skills, understanding how the Java garbage collection works and how can it be tuned

is a must. The first thing that a developer must accept about Java garbage collection is
that it cannot be controlled at runtime. As you see in the next section, there is a way to
suggest the JVM that some memory cleaning is necessary, but there is no guarantee that
a memory cleaning be performed. The only thing that can be done is specify some code
to be run when an object is discarded.

Using the finalize() Method

Every Java class is automatically a subclass of the JDK java.lang.0bject class. This
class is at the root of the JDK hierarchy and is the root of all classes in an application.

It provides a few useful methods that can be extended or overwritten to implement
behavior specific to the subclass. The equals(), hashcode() and toString() were
already mentioned. The finalize() method was deprecated in Java 9, but it was not
removed from the JDK. This method is called by the garbage collector when there are no
longer any references to that object in the code. Before we move forward, let’s look at the
following piece of code.

package com.apress.bgn.ch13;

import com.apress.bgn.ch13.util.NameGenerator;
import org.slf4j.Llogger;
import org.slf4j.LoggerFactory;

import java.time.localDate;
import java.util.Random;

public class Main {
private static final Logger log = LoggerFactory.getlLogger(Main.class);
private static NameGenerator nameGenerator = new NameGenerator();
private static final Random rnd = new Random();

571

CHAPTER 13 GARBAGE COLLECTION

public static void main(String... args) {
while (true) {
genSinger();

}

private static void genSinger() {
Singer s = new Singer(nameGenerator.genName(),
rnd.nextDouble(), LocalDate.now());
log.info("JVM created: {}", s.getName());

The action performed by the code should be clear, even without knowing how the
what the NameGenerator or the Singer class look like. The main method calls the
genSinger () method in an infinite loop. This means that an infinite number of Singer
instances is created. So, what happens? Will the code run? For how long? If you were able
to reply these questions in your mind, my work here is complete. You can stop reading
the book now. Q

In Chapter 5, there were some figures representing the memory contents for a small
program. Figure 13-4 represents how the Java heap and stack memory might look during

the execution of the previous program.

572

CHAPTER 13 GARBAGE COLLECTION

: Stack Heap)
QPO Memory Memory !
| A}
! /| NameGenerator |
4 Logger [4 m ' -_—ﬁ-\ !
|| Comgers=- ’ | G
genSinger() Sowr
E (tn) ; . 4 ™ {tn) :
I [Random md = ... J
| (e) :
: nameGeneralor = : ;
[Loggerlog = ...] \\ String Pool / _
E main()

Java Runtime Memory
Figure 13-4. Java stack and heap memory during execution of the Main.class

Of course, only one genSinger () call was represented and only one Singer instance.
When the main(..) method is called, references to the static instances are created,
which will be relevant to the program until the end of its execution. Then, genSinger ()
methods is called repeatedly. Each of these methods has its own stack where it saves
references to the objects created within the context of that method, in this case the
Singer instance. This reference is used to print the name of the Singer instance that
was created in the body of this method. Then the method terminates without returning
the reference. This means that the instance that was created is no longer necessary,
as it was created to be used only in the context of this method. When the execution of
the genSinger () method ends, the reference to the Singer instance is discarded from
the stack. The Singer instance still exists, in the heap memory, but can no longer be
accessed from the program, thus it is no longer necessary to it. It now keeps a memory
block occupied with its own contents, its references to other instances, in this case, a
String, aDouble and a LocalDate.

Considering that the genString() method is called an infinite number of times (in
Figure 13-4 this is represented with the (*n)), more Singer instances are created, which
keep the memory occupied. At some point, the program becomes unable to create
others because there is no memory available.

573

CHAPTER 13 GARBAGE COLLECTION

This is where the garbage collector comes into the picture. The Singer instances that
are no longer being referenced from the program (and thus unreachable) are considered
garbage. Now you know where the name came from. These instances are no longer
necessary and the memory can be safely cleaned up. The garbage collector is a cleanup
thread that runs in parallel with the main execution thread. It occasionally deletes the
unreferenced objects from the heap memory. And because the finalize() method is
still available for use, we overwrite it for the Singer type to print a log message so that
we can see when the garbage collector is destroying an instance, because before deleting
an object from the heap memory the finalize() method of the object is called. The
following code snippet depicts the Singer instance.

package com.apress.bgn.ch13;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.*;
import java.time.localDate;
import java.util.Objects;

public class Singer implements Serializable {
private static final Logger log = LoggerFactory.getlLogger(Singer.class);
private final long birthtime;

private String name;
private Double rating;
private LocalDate birthDate;

public Singer(String name, Double rating, LocalDate birthDate) {
this.name = name;
this.rating = rating;
this.birthDate = birthDate;
this.birthtime = System.nanoTime();

}

public String getName() {
return name;

574

CHAPTER 13 GARBAGE COLLECTION

@verride
protected void finalize() throws Throwable {
try {
long deathtime = System.nanoTime();
long lifespan = (deathtime - birthtime) / 1 000 000 000;
log.info("GC Destroyed: {} after {} seconds", name, lifespan);
} finally {
super.finalize();

The birthtime field was added to calculate the time that passes between when an
instance constructor is called and the time that the garbage collector calls the finalize()
method; basically we are calculating the lifespan of the instance. As the time is counted in
nanoseconds, we are dividing the difference by 10° to get the time in seconds.

The code sample used in this section gives the garbage collector a lot of work to do,
as every Singer instance being created is being used very little before being discarded. If
you run the code you will see a lot of log messages in the console, first a lot of messages
about objects being created, but if you wait, messages about objects being discarded will
appear as well. All output is directed to a file, because the Intelli] IDEA console is based
on a buffer that resets from time to time to prevent the editor from crashing. You have
to stop the program manually, because the while(true) loop never ends, because its
condition never evaluates to false. After you stopped the program, you notice a log file
at the following location: /chapter13/out/gc.log. If you don’t, modify the Intelli] IDEA
launcher for this class, add the -Dlogback.configurationFile=chapter13/src/main/
resources/logback.xml VM option, and run it again.

The gc. log contents should look a lot like the snippet depicted next.

INFO c.a.b.c.Main - JVM created: Ngvuamtkrfeavt

INFO c.a.b.c.Main - JVM created: Weeghwssuddcatm
INFO c.a.b.c.Main - JVM created: Zrtfrjsjwhwlzh

INFO c.a.b.c.Main - JVM created: Ymsdzcpkatryscf
INFO c.a.b.c.Main - JVM created: T dkqgjujyz moj
INFO c.a.b.c.Main - JVM created: Jjqzzetnwzi itu
INFO c.a.b.c.Main - JVM created: Iuivwasfailc fi

575

(@
C
C
C
C
C

GARBAGE COLLECTION

.Singer - GC Destroyed: Qtzr gwe ifujbn after 1 seconds
.Main - JVM created: Djlui rbftvepf
.Singer - GC Destroyed: Wzdwcc cghisbbq after 0 seconds
.Main - JVM created: Caqw iddgborajm

.Singer - GC Destroyed: Ntiarzdzbhzolnn after 4 seconds
.Main - JVM created: Crtayuigzccufqj

.b.c.Singer - GC Destroyed:
.Singer - GC Destroyed:
.Singer - GC Destroyed:
.Singer - GC Destroyed:
.Singer - GC Destroyed:

Irsovagekpc hca
Hgkzodfrnhuhqwk
Norlcmkzjvkhiev
Gbjknkffngfaght
Mhkn zpfogcc jm

.Main - JVM created: Cningetinfmbunh
.Main - JVM created: Ipwomacdhzoywce
.Main - JVM created: Ydobktlzwcqvkfl
.Main - JVM created: Abjggajzbifghpa
.Main - JVM created: Hnwdvhnkwc rmbz

c.a.b.c.Main - JVM created: Hvcwmekbyhjfncc

CHAPTER 13
INFO c.a.b.
INFO c.a.b.
INFO c.a.b.
INFO c.a.b.
INFO c.a.b.
INFO c.a.b.
INFO c.a
INFO c.a.b.c
INFO c.a.b.c
INFO c.a.b.c
INFO c.a.b.c
INFO c.a.b.c
INFO c.a.b.c
INFO c.a.b.c
INFO c.a.b.c
INFO c.a.b.c
INFO

INFO

INFO
INFO
INFO

When you have the file, you can open it and start analyzing its contents. But because
Intelli] might not open such a big file, try to open it with a specialized text editor like
Notepad++ or Sublime. Or, if you use a Unix/Linux operating system, open your console

c.a.b.c.Singer - GC Destroyed:
c.a.b.c.Singer - GC Destroyed:
c.a.b.c.Singer - GC Destroyed:
c.a.b.c.Singer - GC Destroyed:

and use the grep command like this:

grep -a 'seconds' gc.log

This displays all log entries printed when the finalize() method is called. Then, you

Rbefgb cmvlnfgm
Kusmvtkkikjtzzj
Ouybthckbtkichc
Djzozlssperibka

after
after
after
after
after

after
after
after
after

can select the name of an instance can do something like this:

$ grep -a 'Lybhpococssuoz' gc.log
INFO c.a.b.c.Main - JVM created: Lybhpococssuoz
INFO c.a.b.c.Singer - GC Destroyed: Lybhpococssuoz after 7 seconds

576

O O O O O

seconds
seconds
seconds
seconds
seconds

seconds
seconds
seconds
seconds

CHAPTER 13 GARBAGE COLLECTION

The time it takes for a Singer instance to be deleted from the heap varies, and this
is because the GC is called randomly, the developer has no control over it. There is a
way to explicitly request garbage collection to be done, well two ways. You can call the
following.

System.gc() or
Runtime.getRuntime().gc();

This doesn’t mean that the GC immediately start cleaning up the memory; it is more
like a suggestion to the JVM that it should make an effort to recycle unused objects and
reclaim unused memory, because it is needed.

Now, back to the finalize() method. It was marked as deprecated in Java 9. This
method is meant to be overridden by classes that handle resources that are stored
outside of the heap. The example is the I/O handling classes used to read resources
as files or URLs and databases. The finalize() would be called by the JVM when an
object can no longer be accessed by any alive thread of the running application to make
sure that those resources were released and available for other external and unrelated
programs to use.

** In older versions of Apache Tomcat (a Java based web server), there was

a bug on Windows related to release of resources. When the server crashed or
stopped, it couldn’t be restarted because some of its log files were not released
properly, and the new server instance could not get access to them to start writing
the new log entries.

With the introduction of the java.lang. AutoCloseable interface in JDK 1.7,
the finalize() method became less and less used. Also, another problem with this
method is that the JVM cannot guarantee which thread call this method for any
given object. So any thread that has access to it can call it, and we might end up with
resources being released while the object is still needed. Also, what happens if the
custom implementation is not correct, throws exceptions or does not releases resources
properly? The finalize() method should be called only once by the JVM, but this
cannot be guaranteed. Another downside is that finalize() calls, are not automatically
chained, so an implementation of a finalize() method, must always explicitly call the
finalize() method of the superclass. And another one for you: once finalize()

577

CHAPTER 13 GARBAGE COLLECTION

was called, there is no way to stop the method from executing or undo its effect, so you are
basically left with a reference to an object that no longer has access to its resources. As you
probably figured out by now, there is a lot of freedom given to the developer when it comes
to implementing this method, and this means there is a lot of room for errors to happen.
This is why the finalization mechanism in Java is flawed and was deprecated in JDK
9 to discourage its use. Improper finalize() implementations could lead to: memory
leaks (memory contents are not discarded), deadlocks (resource is blocked by two
processes) and hangs(process is in a waiting state it cannot go out of). But, in order to
help with memory management the java.lang.ref.Cleaner class was introduced. But
before getting into that, I must show you how to check out the status of your memory
programmatically.

Heap Memory Statistics

The Runtime class is useful when trying to interact with the internals of the JVM while

a program is running. Its gc () method can be called to suggest to the JVM that the
memory should be cleaned. A few chapters ago we used methods in this class to start
processes from the Java code. There are three methods in this class that are useful to see
the status of the memory assigned to a Java program.

o runtime.maxMemory() returns the maximum amount of memory the
JVM attempts to use for its heap, if needed. The value returned by this
method varies from machine to machine and is being set implicitly to
a quarter of the total existing RAM memory on the machine, unless
is set it is set explicitly by using the JVM option -Xmx followed by the
amount of memory, (e.g., -Xmx8G allows the JVM to use a maximum
of 8 GB of memory).

o runtime.totalMemory() returns the total amount of memory of
the JVM. The value returned by this method varies from machine to
machine too and is implementation-dependent, unless explicitly set
by using the JVM option -Xms followed by the amount of memory
(e.g., -Xms1G tells the JVM that is the initial size of its heap memory
should be 1 GB of memory).

o runtime.freeMemory() returns an approximation of the amount of
free memory for the Java virtual machine.

578

CHAPTER 13 GARBAGE COLLECTION

Using the runtime.totalMemory() and the runtime.freeMemory() methods, we can
write some code to check how much of our memory is occupied at various times during
the execution of the program. For this we create a class named MemAudit that uses the
current logger to print memory values.

package com.apress.bgn.ch13.util;
import org.slf4j.Logger;

public class MemAudit {
private static final long MEGABYTE = 1024L * 1024L;
private static final Runtime runtime = Runtime.getRuntime();

public static void printBusyMemory(Logger log) {
long memory = runtime.totalMemory() - runtime.freeMemory();
log.info("Occupied memory: {} MB", (memory / MEGABYTE));

}

public static void printTotalMemory(Logger log) {
log.info("Total Program memory: {} MB", (runtime.totalMemory()/
MEGABYTE));
log.info("Max Program memory: {} MB", (runtime.maxMemory()/MEGABYTE));

}
}
And the methods in this class are called during the execution of our program as it
follows.

package com.apress.bgn.chi3;

import com.apress.bgn.ch13.util.NameGenerator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.time.LocalDate;

import java.util.Random;

import static com.apress.bgn.ch13.util.MemAudit.printTotalMemory;
import static com.apress.bgn.chi3.util.MemAudit.printBusyMemory;

579

CHAPTER 13

public class Main {

GARBAGE COLLECTION

private static final Logger log = LoggerFactory.getlLogger(Main.class);
private static NameGenerator nameGenerator = new NameGenerator();

private static final Random random = new Random();

public static void main(String... args) {

}

printTotalMemory(log);

int count =0;

while (true) {

count++;
if (count % 1000 == 0) {

genSinger();

printBusyMemory(log);

private static void genSinger() {

new Singer(nameGenerator.genName(),
random.nextDouble(), LocalDate.now());
log.info("JVM created: {}", s.getName());

Singer s =

Now, after we delete the old log file, we should run it again, and leave it for a little

while. And because it is impossible again to see the output, we’ll use the grep method to

extract all lines containing the memory word, and the result should look quite similar to

the next listing.

$ grep -a 'memory’

INFO
INFO
INFO
INFO
INFO
INFO
INFO

580

N N0 N0 N0 N0 0O N
VoY Y Y Y Y

S T O O T T O

.C.

C
(@
.C.
C
C
C

Main

.Main
.Main

Main

.Main
.Main
.Main

gc.log

Total Program memory: 256 MB
Max Program memory: 4096 MB

Occupied memory: 5 MB
Occupied memory: 3 MB
Occupied memory: 4 MB

Occupied memory: 5 MB
Occupied memory: 5 MB

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

c.a.b.c.Main
c.a.b.c.Main
c.a.b.c.Main
c.a.b.c.Main
c.a.b.c.Main
c.a.b.c.Main
c.a.b.c.Main
c.a.b.c.Main
c.a.b.c.Main
c.a.b.c.Main

CHAPTER 13 GARBAGE COLLECTION

Occupied memory: 4 MB
Occupied memory: 4 MB
Occupied memory: 7 MB
Occupied memory: 8 MB
Occupied memory: 8 MB
Occupied memory: 9 MB
Occupied memory: 7 MB
Occupied memory: 3 MB
Occupied memory: 15 MB
Occupied memory: 7 MB

The max memory is 4096MB, which means my machine has a total of 16 GB of

RAM, and the occupied memory is very little, not even close to the initial 256 MB the

JVM is given to use. If we want to see real memory being occupied we can modify the

genSinger () method to return the created references and add them to a list.

package com.apress.bgn.chi3;

import
import
import

import
import
import
import

import
import

public

private static final Logger log =

private static final Random random

com.apress.bgn.ch13.util.NameGenerator;

org.slf4j.Logger;
org.slf4j.LoggerFactory;

java.time.LocalDate;
java.util.Arraylist;

java.util.list;
java.util.Random;

static com.apress.bgn.ch13.util.MemAudit.printBusyMemory;
static com.apress.bgn.ch13.util.MemAudit.printTotalMemory;

class MemoryConsumptionDemo {

LoggerFactory.getLogger (MemoryConsumptionDemo.class);
private static NameGenerator nameGenerator = new NameGenerator();

= new Random();

581

CHAPTER 13 GARBAGE COLLECTION

public static void main(String... args) {
printTotalMemory(log);
List<Singer> singers = new ArraylList<>();
for (int i = 0; 1 < 1 000 000; ++i) {
singers.add(genSinger());
if (i % 1000 == 0) {
printBusyMemory(log);

}

private static Singer genSinger() {
Singer s = new Singer(nameGenerator.genName(),
random.nextDouble(), LocalDate.now());
log.info("JVM created: {}", s.getName());
return s;

After running the program, we can actually see the memory being used increasing
gradually. A look in the log filtered magically by the grep command shows us that the
program keeps the memory occupied until its end, since the references now are saved in
to the List<Singer> instance.

$ grep -a 'memory’ gc.log

INFO c.a.b.c.MemoryConsumptionDemo - Total Program memory: 256 MB
INFO c.a.b.c.MemoryConsumptionDemo - Max Program memory: 4096 MB
INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 13 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 16 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 18 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 21 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 6 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 9 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 12 MB
INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 15 MB

582

CHAPTER 13 GARBAGE COLLECTION

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 17 MB
INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 20 MB
INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 23 MB
INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 26 MB
INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 28 MB
INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 428 MB

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 430 MB
INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 433 MB

And as we print the occupied memory every 1000 steps, we can draw the conclusion
that 1000 Singer instances occupy approximatively 2 MB. The code no longer uses an
infinite loop to generate instances, if it would do that, at some point in time the program
will abruptly crash throwing the following exception.

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
at chapter.thirteen/com.apress.bgn.ch13.MemoryConsumptionDemo
.genSinger(MemoryConsumptionDemo. java:64)
at chapter.thirteen/com.apress.bgn.ch13.MemoryConsumptionDemo
.main(MemoryConsumptionDemo.java:55)

Remember the value returned by the runtime.maxMemory()? On my machine, it was
4096MB. If I look in the console, right before the exception, I will see the following.

INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4094 MB
INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4094 MB
INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4095 MB
INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4095 MB
INFO c.a.b.c.MemoryConsumptionDemo - Occupied memory: 4095 MB

So the JVM was struggling to create another Singer instance, but there was no more
memory left. The last value printed before the exception was 4095MB, which is 1 MB less
than 4096MB the maximum amount of memory that the JVM was allowed to use. So the
poor JVM crashed because there was no more heap memory available. If a program ever
ends like that, the problem is always in the design of the solution. Also the values for
total and maximum memory for the JVM can influence the behavior of the GC as well.

583

CHAPTER 13 GARBAGE COLLECTION

The -Xms and -Xmx are important because they decide the initial and the maximum
size of the heap memory. Configured properly they can increase performance, but when
unsuitable values are used they have the adverse effect. For example, never set an initial
size for the heap too small, because if there is not enough space to fit all objects created
by the application the JVM has to allocate more memory, rebuilding the heap basically.
So if this happens a few times during the application run, the overall time consumption
is affected. The maximum size for the heap is very important, allocating too little might
cause an application crash, allocating too much might hinder other programs from
running. Deciding these values is usually done through repeated experiments and
starting with JDK 11, the new Epsilon garbage collector comes in handy for this purpose.

If you want to learn more about GC tuning, the best documentation is the official one
athttps://docs.oracle.com/javase/10/gctuning/toc.htm.

So, now that you know what to expect from the GC, let’s look at other methods of
customizing its behavior so problems are avoided.

Using Cleaner

After the finalize() method is taken out of the JDK, if needed, classes can be
developed to implement java.lang.AutoCloseable and provide an implementation
for the close() method and make sure you use your objects in a try-with-resources
statement. But if you want to avoid implementing the interface there is another way,
use a java.lang.ref.Cleaner object. This class can be instantiated and objects can be
registered to it together with an action to perform when the object is being discarded by
the garbage collector. Using a Cleaner instance, the previous code can be rewritten as
depicted in the next code listing.

package com.apress.bgn.chi3.cleaner;

import com.apress.bgn.ch13.util.NameGenerator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.lang.ref.Cleaner;
import java.time.LocalDate;
import java.util.Random;

import static com.apress.bgn.chi3.util.MemAudit.printBusyMemory;
import static com.apress.bgn.ch13.util.MemAudit.printTotalMemory;

584

http://oracle.com/javase/10/gctuning/toc.htm

CHAPTER 13 GARBAGE COLLECTION

public class CleanerDemo {
private static final Logger log = LoggerFactory.getlLogger(CleanerDemo.
class);
public static final Cleaner cleaner = Cleaner.create();
private static NameGenerator nameGenerator = new NameGenerator();

public static void main(String... args) {
printTotalMemory(log);
int count = 0;
for (int i = 0; i < 100 000; ++i) {
genActor();
count++;
if (count % 1000 == 0) {
printBusyMemory(log);
System.gc();

}

//filling memory with arrays of String to force GC to clean up
Actor objects
for (int i = 1; i <= 10 000; i++) {
String[] s = new String[10 000];
try {
Thread.sleep(1);
} catch (InterruptedException e) {

}

}

private static Cleaner.Cleanable genActor() {
Actor a = new Actor(nameGenerator.genName(), LocalDate.now());
log.info("JVM created: {}", a.getName());
Cleaner.Cleanable handle = cleaner.register(a,
new ActorRunnable(a.getName(), log));
return handle;

585

CHAPTER 13 GARBAGE COLLECTION

static class ActorRunnable implements Runnable {
private final String actorName;
private final Logger log;

public ActorRunnable(String actorName, Logger log) {
this.actorName = actorName;
this.log = log;
}

@Override
public void run() {
log.info("GC Destroyed: {} ", actorName);

Because we wanted to make it easier for you to browse the code, as all these sources
are part of the same project, we are using here a class modelling an Actor instead of a
Singer, but no worries, the implementation is quite similar. The Cleaner instance has a
method named register(..) thatis called to register the action to be performed when
the object is cleaned. The action to be performed is specified as a Runnable instance,
and the decision to create a class by implementing it, ActorRunnable in this example,
was taken so we could save the name of the object to be destroyed into a field, without
keeping a reference to the object to be destroyed; otherwise, the Cleaner.Cleanable
handle would not be used by the GC during the execution of the program, as the object
would appear as if it still had references to it.

The cleaner.register(..) method returns an instance of type Cleaner.Cleanable
that explicitly performs the action by calling the clean() method. If you run the
preceding code, the printed log would look similar to this:

INFO c.a.b.c.c.CleanerDemo - Total Program memory: 256 MB
INFO c.a.b.c.c.CleanerDemo - Max Program memory: 4096 MB

INFO c.a.b.c.c.CleanerDemo - JVM created: Vgyfr uayznrtu

INFO c.a.b.c.c.CleanerDemo - JVM created: Cowplkbzshwudhb
INFO c.a.b.c.c.CleanerDemo - JVM created: Ijwqydlvzldequd
INFO c.a.b.c.c.CleanerDemo - JVM created: Jfnjgopzmrdacim
INFO c.a.b.c.c.CleanerDemo - JVM created: Tnnwizmtipgmvsz

586

CHAPTER 13 GARBAGE COLLECTION

INFO c.a.b.c.c.CleanerDemo - JVM created: Wffuzkzrhrfjrsj
INFO c.a.b.c.c.CleanerDemo - JVM created: V1fsvprbtfytdzm
INFO c.a.b.c.c.CleanerDemo - Occupied memory: 16 MB

INFO c.a.b.c.c.CleanerDemo - JVM created: Vrjflltszakvzgp
INFO c.a.b.c.c.CleanerDemo - JVM created: Ofu ugogizfwkci
INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Dvhwsacmrytebor
INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Sutwbmtegacrgvz
INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Posqthfridobvit
INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Bebmsdraphkpdbs
INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Jrgekcgrkhcfkfv
INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Ugffjeapvbjbqwz
INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Mzkgezhkejfgc e
INFO c.a.b.c.c.CleanerDemo - JVM created: Rlamcgwypkktkah

INFO c.a.b.c.c.CleanerDemo - GC Destroyed: Tefdzrt zqilo

So, the same result as using finalize() was obtained, but without implementing
a deprecated method. As a good practice to take from here, if you are writing your
application using Java 9+, avoid using finalize(), because this method is clearly on the
path of being removed. Use Cleaner and you might have less of a hassle when upgrading
the Java version your application is using.

Preventing GC from Deleting an Object

In the two previous sections, we focused on objects that are eligible for garbage
collection. But in an application, there are objects that should not be discarded while the
program runs, because they are needed. The most obvious references in our classes that
were discarded only at the end of the execution were the static fields, and they are final,
so they cannot be reinitialized.

private static final Logger log = LoggerFactory.getLogger(CleanerDemo.
class);

public static final Cleaner cleaner = Cleaner.create();

private static NameGenerator nameGenerator = new NameGenerator();
private static final Random random = new Random();

587

CHAPTER 13 GARBAGE COLLECTION

The problem with these static values is that they occupy the memory. What if you
need a big Map that contains a dictionary that is not needed when the application starts?
To solve this, enter the Singleton design pattern. The Singleton pattern is a specific
design of a class that ensures the class can only be instantiated once during the execution
of the program. This is done by hiding the constructor (declare it private), and declaring
a private static reference of the class type and a static method to return it. There is more
than one way to write a class according to the Singleton pattern, but the most common
way is depicted in the next code listing.

package com.apress.bgn.ch13.util;
import org.slf4j.Logger;
import org.slf4j.lLoggerFactory;

import java.util.HashMap;
import java.util.Map;

public final class SingletonDictionary {
private static final Logger log =
LoggerFactory.getLogger(SingletonDictionary.class);

private static SingletonDictionary instance = new SingletonDictionary();

private Map<String, String> dictionary = new HashMap<>();

private SingletonDictionary(){
// init dictionary
log.info("Starting to create dictionary: {}", System.
currentTimeMillis());
final NameGenerator keyGen = new NameGenerator(20);
final NameGenerator valGen = new NameGenerator(200);
for (int i = 0; i < 100 000; ++i) {
dictionary.put(keyGen.genName(), valGen.genName());
}

log.info("Done creating dictionary: {}", System.currentTimeMillis());

588

CHAPTER 13 GARBAGE COLLECTION

public synchronized static SingletonDictionary getInstance(){
return instance;

In the code, we simulated a dictionary with 100,000 entries, all generated by
a modified version of the NameGenerator class. Log messages were printed in its
constructor to be really obvious when the instance is created. There are four things you
have to remember about the Singleton pattern.

e The constructor must be private, as it should not be called outside
the class.

o The class must contain a static reference to an object of its type that
can be initialized in place by calling the private constructor.

¢ A method to retrieve this instance must be defined, so it has to be
static.

o The method to retrieve the static instance also has to be synchronized
so no two threads can call it at the same and gain access to the
instance, because the core idea of the Singleton pattern is to allow the
class to be instantiated only once during the duration of the execution
of the program and ensure that no concurrent access is allowed, as it
might lead to unexpected behavior. Also, there is an implementation
version that initializes the instance in the method that retrieves it, so
concurrent access might lead to more than one instance being created.

In a singleton class, a static reference to an instance is created and this static
reference prevents the garbage collector from cleaning up this instance during the
execution of the program. To test this, we’ll write a main class that declares a Cleaner
instance, and register a Cleanable for the SingletonDictionary instance. The main
method creates a lot of String arrays to fill up the memory to convince the GC to delete
the SingletonDictionary instance, and we'll even set its own reference to it to null.

package com.apress.bgn.chi3;

import com.apress.bgn.ch13.util.SingletonDictionary;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

589

CHAPTER 13 GARBAGE COLLECTION
import java.lang.ref.Cleaner;

public class SingletonDictionaryDemo {
public static final Cleaner cleaner = Cleaner.create();
private static final Logger log =
LoggerFactory.getLogger(SingletonDictionaryDemo.class);

public static void main(String... args) {
log.info("Testing SingletonDictionary...");

//filling memory with arrays of String to force GC
for (int i = 1; i <= 10 000; i++) {
String[] s = new String[10 000];
try {
Thread.sleep(1);
} catch (InterruptedException e) {
}
}

SingletonDictionary singletonDictionary =
SingletonDictionary.getInstance();

cleaner.register(singletonDictionary, ()-> {
log.info("Cleaned up the dictionary!");

IOk

// we delete the reference

singletonDictionary = null;

//filling memory with arrays of String to force GC
for (int i = 1; i <= 10 000; i++) {
String[] s = new String[10 000];
try {
Thread.sleep(1);
} catch (InterruptedException e) {
}

}
log.info("DONE.");

590

CHAPTER 13 GARBAGE COLLECTION

If we run the code and expect to see the "Cleaned up the dictionary!" message in
the console, we're expecting in vain. That static reference in the SingletonDictionary
will not allow GC to touch that object until the program ends. The static reference that
we have in class SingletonDictionary is also called a strong reference, because it
prevents the object from being discarded from memory.

Using Weak References

If there are strong references, we should be able to use weak references for objects that

we want cleaned, right? Right. In Java, there are three classes that can be used to create

areference to an object that does not protect that object from garbage collection. This

is useful for objects that are too big, and it makes it inefficient to keep them in memory.

With this kind of objects it is worth the cost of time consumed to be reinitialized, because

keeping them in memory would slow done the overall performance of the application.
The three classes are:

e java.lang.ref.SoftReference<T>: objects referred by these type
of references are cleared at the discretion of the garbage collector in
response to memory demand. Soft references are most often used to

implement memory-sensitive caches.

e java.lang.ref.WeakReference<T>: objects referred by these type of
references do not prevent their referents from being made finalizable,
finalized, and then reclaimed. Weak references are most often used
to implement canonicalizing mappings. Canonicalizing mapping
refers to containers where weak references can be kept in and can
be accessed by other objects, but their link to the container, does not
prevent them from being collected.

e Jjava.lang.ref.PhantomReference<T>: objects referred by these type
of references are enqueued after the collector determines that their
referents may otherwise be reclaimed. Phantom references are most
often used to schedule post-mortem cleanup actions.

Our SingletonDictionary contains a Map<> that is the big object stored in memory.
This map can be wrapped in a WeakReference, and we can write some logic that it should

591

CHAPTER 13 GARBAGE COLLECTION

be reinitialized if it is not there when accessed. Because we need to access the map, the

implementation changes a little, aside from wrapping the Map into a WeakReference. The

new class, named WeakDictionary, is depicted in the following code listing.

package com.apress.bgn.ch13.util;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.lang.ref.WeakReference;
import java.util.HashMap;

import java.util.Map;

public class WeakDictionary {

592

private static final Logger log =
LoggerFactory.getLogger(WeakDictionary.class);

private static WeakDictionary instance = new WeakDictionary();

private WeakReference<Map<Integer, String>> dictionary;

private static Cleaner cleaner;

private WeakDictionary() {
cleaner = Cleaner.create();
dictionary = new WeakReference<>(initDictionary());

}

public synchronized String getExplanationFor(Integer key) {
Map<Integer, String> dict = dictionary.get();
if (dict == null) {
dict = initDictionary();
dictionary = new WeakReference<>(dict);

return dict.get(key);
} else {
return dict.get(key);

}

public synchronized static WeakDictionary getInstance() {
return instance;

CHAPTER 13 GARBAGE COLLECTION

private Map<Integer, String> initDictionary() {
Map<Integer, String> dict = new HashMap<>();
log.info("Starting to create dictionary: {}", System.
currentTimeMillis());
final NameGenerator keyGen = new NameGenerator(20);
final NameGenerator valGen = new NameGenerator(200);
for (int i = 0; i < 100 000; ++i) {

dict.put(i, valGen.genName());

}
log.info("Done creating dictionary: {}", System.
currentTimeMillis());
cleaner.register(dict, ()-> log.info("Cleaned up the
dictionary!"));
return dict;

The getExplanationFor accesses the map and gets the value corresponding a key.
But before doing that, we have to check if the Map is still there. This is done by calling the
get() method on the dictionary reference that is of type WeakReference<Map<Integer,
String>>. If the map was not collected by the GC, the key is extracted and returned;
otherwise, the Map is reinitialized and the weak reference is re-created.

The Cleaner instance was moved in the WeakDictionary class, and registered a
Cleanable for the Map so we can see the map being collected. So, how do we test this? In
a similar way we tested SingletonDictionary.

package com.apress.bgn.ch13;

import com.apress.bgn.ch13.util.WeakDictionary;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class WeakDictionaryDemo {
private static final Logger log =
LoggerFactory.getLogger(WeakDictionaryDemo.class);

593

CHAPTER 13 GARBAGE COLLECTION

public static void main(String... args) {
log.info("Testing WeakDictionaryDemo...");

//filling memory with arrays of String to force GC
for (int i = 1; i <= 10 000; i++) {
String[] s = new String[10 000];
try {
Thread.sleep(1);
} catch (InterruptedException e) {

}
}

WeakDictionary weakDictionary = WeakDictionary.getInstance();

//filling memory with arrays of String to force GC
for (int i = 1; i <= 10 000; i++) {
String[] s = new String[10 000];
try {
Thread.sleep(1);
} catch (InterruptedException e) {

}

}
log.info("Getting val for 3 = {}", weakDictionary.

getExplanationFor(3));
log.info("DONE.");

So, after retrieving the WeakDictionary reference, a lot of String arrays are created
to force GC to delete the map from memory. After that, we try to access the problematic
map. Will it work?

INFO c.a.b.c.WeakDictionaryDemo - Testing WeakDictionaryDemo...

INFO c.a.b.c.u.WeakDictionary - Starting to create dictionary: 1536633126455
INFO c.a.b.c.u.WeakDictionary - Done creating dictionary: 1536633126701
INFO c.a.b.c.u.WeakDictionary - Cleaned up the dictionary!

594

CHAPTER 13 GARBAGE COLLECTION

INFO c.a.b.c.u.WeakDictionary - Starting to create dictionary: 1536633139512
INFO c.a.b.c.u.WeakDictionary - Done creating dictionary: 1536633139742
INFO c.a.b.c.WeakDictionaryDemo - Getting val for 3 = Ingermy...

INFO c.a.b.c.WeakDictionaryDemo - DONE.

The log proves this works. And not only that, we can see the map being discarded by
GC and then reinitialized when needed. This is the power of soft references.

Although the garbage collection process is un-deterministic, because it cannot be
controlled much from the code, a Java program cannot tell it to start, pause or stop, but
using the appropriate VM options we can control the resources it has and from the code
using the proper implementation we can tell it what to collect or not and most of the
times this is enough.?

Garbage Collection Exceptions and Causes

If objects cannot be discarded from the memory, an exception of type OutOfMemoryError
is thrown. I'm not sure if you noticed, but this is not actually an exception. The exception
class hierarchy was mentioned in Chapter 5. If you remember, in that hierarchy

there was a class named java.lang.Error thatimplements java.lang.Throwable.
These types of objects are thrown by a program when there is a critical issue that the
program cannot recover from. The following is the full hierarchy of the java.lang.
OutOfMemoryError.

java.lang.Object
java.lang.Throwable
java.lang.Error
java.lang.VirtualMachineError
java.lang.OutOfMemoryError

So, OutOfMemoryError is one of those ugly things you do not want thrown when your
program is running, because this means your program is no longer running. In this case,
itis not running because it has no memory left to store new objects being created.

?If you want more details about GC this article is on point: https://www.oracle.com/
technetwork/tutorials/tutorials-1876574.html

595

https://www.oracle.com/technetwork/tutorials/tutorials-1876574.html
https://www.oracle.com/technetwork/tutorials/tutorials-1876574.html

CHAPTER 13 GARBAGE COLLECTION

This error is being thrown by the JVM when anything goes wrong when doing
memory management. Although, the most common cause is that the heap memory is
depleted, there are other causes.

When heap memory allocated to the JVM is depleted, the error has the following
message:

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
But there is another message that you might see.

Exception in thread "main" java.lang.OutOfMemoryError: GC Overhead Limit
Exceeded

This message is still related to the heap size. The error is thrown with this message
when the data for the program barely fits the size of the heap, so the heap is almost full,
which allows the GC to run, but because it cannot redeem any memory, the GC keeps
running, and it is hindering the normal execution of the application. This message
is added to the error when the GC spends 98% of execution time and the application
spends the other 2%.

These two are the most common error messages you see when GC cannot do its job
properly for whatever reason. A complete list can be found at https://docs.oracle.
com/javase/8/docs/technotes/guides/troubleshoot/memleaks002.html, but since
most GC issues relate to the heap size, G1GC mostly throws errors with the Java heap
space message.

Summary

This section ends this book. When it comes to the Java ecosystem, there are a lot of books
and tutorials on the Internet. This book only scratches the surface to give you a good
starting point as a Java developer. The whole team that worked on it hopes it satisfies
your needs and sparks your curiosity to find out more. Just keep in mind that there is no
panacea solution to make sure the memory is always managed right regardless of the
application scope. If you get in trouble, experimentation is always a step in determining
the right collector for your JVM.

596

https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/memleaks002.html
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/memleaks002.html

CHAPTER 13 GARBAGE COLLECTION

This chapter has covered the following topics.

what garbage collection is and the steps involved
how the heap memory is structured

how many types of garbage collectors there are in the Oracle HotSpot
JVM and how can we switch between them

how to view a garbage collector configurations and statistics using
VM options

how to view the garbage collection in action using finalize and
Cleaner

how to stop the garbage collector from collecting important objects

how to create objects that are easily collected using soft references

597

Index

A

Abstract Window Toolkit (AWT),
9, 14, 420-422
Access modifiers
compilation error, 62
member-level accessors, 60, 63
package-private modifier, 61
public class, 60
top-level, 60
anonymous class, 285
anyMatch(..) method, 309
Apache Tomcat, 577
Arrays, 92
Assignment operator (=), 209-210
AudioType, 299

B

Binary operators, 217
Binary representation, 168-169
Binary serialization, 503-507
Bitwise operators, 227

AND, 228, 230

NOT, 227-228

OR, 230-231

XOR, 231-232
Boxing, 190
Bubble sort algorithm, 256, 267
Building blocks

© Iuliana Cosmina 2018

access modifiers, 60
class, 56

fields, 56

JAR, 58

library, 59

methods, 56
modules, 60
package-info.java, 57

Checked exceptions, 143-144
Classes

abstraction
Actor class, 123
Human class, 121-122
Java compiler error, 122
Musician class, 123
parent class/superclass, 122
subclass, 122
UML diagram, Intelli]
IDEA, 123-124
constructors, 117-120
data encapsulation, 111-114
fields, 108-110
instantiation, 107-108
methods, 115-117
variables, 110-111

Comments, 107
Compact String, 187

599

I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6

https://doi.org/10.1007/978-1-4842-3778-6

INDEX

Concurrent mark sweep (CMS), 565
Constructors
Actor class, 120
Human instance, 117-119
Musician class, 120
polymorphism, 119
return statement, 118
Control flow statements
flowchart elements, 244
if-else
code, 248
flowchart, Complex if-else, 247

flowchart, missing else branch, 246

Intelli] IDEA launcher, 249
parameters, 249
using exception, 277-279
using try catch, 277-278

D

Data encapsulation, 111-114
Debugging
assertions
java.lang.AssertionError, 346-347
rules, 348
VM options, 346
breakpoints, 317
definition, 317
Intelli] IDEA breakpoints, 348-349
Java tools
jemd, 353-355
jconsole, 355-358
JMC, 359-362
jps, 351-352
logging
main(..) method, 324
merge sort, 319-322
sort(..) method, 325

600

sorting class hierarchy, 319

System.out.print class family, 318

System.out.print method, 322-324

logging with JUL

FileHandler class, 330

Intelli] IDEA, 334

java.util.logging.ConsoleHandler, 329

java.util.logging.Level class, 336

java.util.logging.
SimpleFormatter, 329

logging libraries, 325

logging output, 331

log messages, 335

MergeSort class, 326, 328

SimpleFormatter, 330

SorterJulDemo class, 326

SortingJulDemo class, 329, 332-333

StreamFormatter class, 329

StringBuilder, 326

WARNING, 335, 336

XMLFormatter, 330

SLF4] and Logback, 337

ch.qos.logback.core.
ConsoleAppender class, 340

ch.qos.logback.core.FileAppender
class, 341

ch.qos.logback.core.rolling.
RollingFileAppender, 342-343

ch.qos.logback.core.rolling.
RollingPolicy, 342

configuration file, XML/Groovy, 339

info.debug(..) logs, 339

info.error(..) logs, 338

info.warn(..) logs, 339

logging implementation, 337, 339

log.info(..) logs, 339

LogManager, 337

log.trace(..) logs, 339

MergeSort class, 340
<rollingPolicy> element, 343
SortingSlf4jDemo class, 340-341
SortingSlf4jDemo.main(..)
method, 344
StringBuilder, 344
<timeBasedFileNamingAnd
TriggeringPolicy>, 343
SortingSlf4jDemo class, 349-351
techniques, 317
Deserialization, 503
distinct() method, 306
Documentation, Javadoc
@author tag, 398
classes and variables, 397
@deprecated tag, 403
Doclet API, 407
expression RTFM, 407
Gradle javadoc task, 403-406
HTML tags, 398
Intelli] IDEA, 406-407
IntSorter interface, 398
@link tag, 400, 402
method declarations, 400-401
Optional<T> interface, 399-400
@param tags, 401
@return tags, 401
special tags, 397
@throws tag, 402

E

Eden space, 562
Elvis operator, 241
empty() method, 295
Enums
comment() method, 128
field values, 126

INDEX

Gender enum, 125
getComment(), 127
Human class, 128, 129
private modifier, 125
Epsilon no-op collector, 565
equals() method, 224
Exceptions
checked, 143-144
compiler error, 144
definition, 139
EmptyPerformerException, 143
finally block, 144
hierarchy, 140
NullPointerException, 143
PerformerGenerator, 142-143
RuntimeException, 141
StackOverFlowError, 140-141
swallowing, 141
throwable, 140
try/catch block, 143-144
unchecked, 143
Exchangeable Image File Format (EXIF)
data, 514-517
Explicit type conversion, 212, 214

F

File handlers
accept(..) method, 476
canRead() and canWrite(), 475
createNewFile(), 476
createTempFile(prefix, suffix), 477
deleteOnExit(), 477
description, 471
exists(), 477
FileFilter, 476
FilenameFilter, 476
getAbsolutePath(), 473

601

INDEX

File handlers (cont.)
getName(), 474
getParent(), 474
IOException, 478
isFile(), 473
isHidden(), 475
lambda expressions, 476
length(), 474
list() method, 475
listFiles(), 475
pathnames, 473, 475
printStats(..) method, 471-472
rename(f), 478
SecurityException, 477
String value, 471
URI, 474

FileInputStream, 489-492

FileOutputStream, 499-502

FilterCharProcessor, 539

Finite streams, 289

flatMap(..) method, 304-305

Flattening, 305

Floating-point types, 170

Flow.Processor, 549

Flow.Publisher, 549

FlowPublisherVerification

<Integer>, 550

Flow.Subscriber, 549

forEach(..) method, 285, 301

Functional interfaces, 138

G

Garbage collection (GC)
Cleaner instance, 584, 585
cleaner.register() method, 586-587
CMS, 564-565, 568
code

602

finalize() methods, 571, 574-575, 577
genSinger() methods, 572, 573
grep command, 576
Intelli] IDEA launcher, 575-576
deleting object, 587
eden space, 562
Epsilon no-op collector, 565, 569
exceptions and causes, 595-596
G1, 565, 569
garbage first (G1), 564
generations, 562
genSinger() method, 581-582
go() method, 578
grep method, 580, 582
head memory, 578, 583
heap structure, 561-562
Java heap and stack memory, 572-573
java.lang.ref.Cleaner object, 584
old generation space, 563
Oracle Hotspot JVM
architecture, 560-561
parallel collector, 565, 567
permanent generation space, 564
runtime.freeMemory() method, 578
runtime.maxMemory()
method, 578, 583
runtime.totalMemory() method, 578
serial collector, 564, 566
SingletonDictionary
instance, 589, 590
Singleton pattern, 588-589
strong reference, 591
TLAB, 570
VM option, 566-568, 570
weak references, 591, 593-595
-Xms and-Xmzx, 584
young generation space, 562-563

Garbage first (G1), 565
generate(..) method, 290
Generics, 145-147

Git, 24, 38

Gradle, 24, 37-38, 85

Gradle multimodule-level structure, 87-88

Gradle project, 86, 88-89

H

Heavyweight components, 14
Hello World! class
class declaration, 90
configuration, 93-94
Intelli] IDEA editor, 89
java.util.List, 94
main() method, 90-92, 94
package declaration, 90
println() method, 95, 96

Identifiers, 106
Imperative programming, 537
Installation
Download JDK button, 26
Git, 38
Gradle, 37-38
JDK 8 vs. contents comparison, 28
JDK 10 vs. JRE contents, 28
Integer primitives
byte, 169
int, 169
long, 170
short, 169
Integrated development environment
(IDE), 23
Integration tests, 371
Intelli] IDEA, 23, 41, 62, 88-89, 249

INDEX

Intelli] IDEA, HelloWorld project

build menu, 76

build project option, 76
change directory, 79
commands execution, 80
compile, 77, 80
configuration, 72

create new project option, 70-71
directory structure, 82
HelloWorld.java file, 74, 79
Java class, 75, 78-79

Java module, 71

Java 11 project, 71

JRE, 78

language level, 73

menu option, 76
modules, 73-74

move class, 82

object types, 76

package option, 81
project SDK, 73

project settings, 73
project view, 72

refactor button, 82
sandbox, 72

src directory, 75
terminal button, 79

Interactions, Java components, 531
Interface Publisher<T>, 534
Interfaces

vs. abstract classes, 134

annotations, 129, 137-139

API, 135

Artist interface, 133, 135
compiler errors, 136
isCreative method, 137
Java broken hierarchy, 136
Performer class, 135-136

603

INDEX

Interfaces (cont.) portable, 8-9
default methods, 135 real applications in, 2
definition, 129 Sun Microsystems
diamond class hierarchy, 130 automatic memory management, 7
marker, 129 Duke, 5
Musician and Actor classes, 129-130 Green Team, 5
normal, 129 Java logo, 7
Performer class, 129-133 logo, 6
Interface Subscriber<R>, 534 multithreaded execution, 7
Intermediate operations, 282, 298 portability, 7
Internationalization security, 7
contents of resource files, 444 version 9, 21
description, 442 Java Archives (JARs), 58
JavaFX, 446-449 Java Architecture for XML Binding
locale, 442 (JAXB), 507-510
property names, 445 Java building blocks, 59, 66
Resource Bundle Intelli] IDEA Java code, 100
editor, 444-445 Java coding conventions, 106
resource files, 443, 449 Java editors, 62
Stage.close(), 449-450 JavaFX
International Software Testing applications, 526-529
Qualifications Board (ISTQB), 370 BorderPane, 438
Interning, 184 CellFactory, 439-440
IntPublisher class, 556 colored ComboBox demo, 441
IntStream interface, 292 ComboBox, 438-440

components, 432
CSS style elements, 438

Ja K graphics, 434

Jar hell, 60, 69 GUlI library, 432

Java java.lang.IllegalAccessException, 433
applications, 21 launch(...) method, 434
code, 2-3 ListCell declaration, 441
conventions, 4 modules, 432
Gradle, 3, 20, 22 nodes, 434
Hello World!, 2 Oracle, 432
history, 1-2 Prism, 433
machine code, 9-10 properties, 434
Node.js, 21 Quantum toolkit, 434

604

start(..) methods, 435
Swing and AWT, 433
TextArea, 438-439
Window Demo, 435-437

JAVA_HOME environment variable

on Linux, 36-37

on macQOS, 35-36

on Windows system
dialog window, 31
menu item, 30
Path variable, 33
system variable, 32, 34

Java IDE

GitHub user, 42-43

Intelli] IDEA
configure Git plugin, 41
configure Gradle plugin, 41
configure plugins dialog section, 40
Gradle project view, 46
IDE Feature Trainer plugin, 42
java-for-absolute-beginners

project, 43-45
JetBrains, 39

Java keywords, 147-150
Java Media API

BaseMultiResolutionImage class,
519-523

BufferedImage, 517

checkSize(..), 524

EXIF data, 514-517

getResolutionVariant(), 521, 522,
524-525

image classes hierarchy, 513-514

image file, 514

ImagelO class, 519

image storage formats, 513

java.awt.Graphics2D, 517-519

java.awt.Image class, 513-514

INDEX

output files, 519
width and height of images, 526
Java Message Service (JMS), 531
Java Mission Control (JMC)
description, 359
flight recording menu and dialog
window, 361-362
Java Flight Recorder, 359
Memory tab, 360-361
Oracle article, 362
SortingSlf4jDemo main class, 359
start JMX console, 359-360
Java Native Interface (JNI), 29
Java 2 Platform, Enterprise Edition
(J2EE), 11
Java 2 Platform, Micro Edition (J2ME), 11
Java 2 Platform, Standard Edition (J2SE), 11
Java Process API
BufferedReader, 363
children() method, 368
creating, 362-363
InputStream, 363
JAVA_HOME environment variable, 366
Linux shell commands, 367
onExit(), 367
parent() method, 368
ProcessBuilder, 367-368
ProcessDemo class, 366
ProcessHandle, 364
ProcessHandle.Info, 365
Java Runtime Environment (JRE), 10, 28
JavaScript Object Notation (JSON), 511-513
Java Server Pages (JSP), 455-456, 461, 463
Java Shell tool (JShell)
code completion, 53
defined, 49
help, 50
java.lang.String, 52

605

INDEX

Java Shell tool (JShell) (cont.)
Java statements, 55
JDK, 50
+ operator, 51
Oracle, 55
REPL, 49
scratch variable, 51
String method, 52
string variable, 54
variables, 51
vars command, 54, 55
verbose mode, 50
Java syntax
comments, 107
exceptions, 139-141, 143-145
generics, 145-147
grammar
block delimiters, 105
case sensitive, 103
Java keywords, 104
line terminators, 105
variables, 104
identifiers, 106
import section, 101-103
Java code, 100
lambda expressions, 99
languages, 99
object types (see Object types)
package declaration, 101
variables, 106
java.util.Optional<T> instances, 295
java.util.stream.Stream.Builder<T>, 289
Java Virtual Machine (JVM), 29, 49
jemd, 353-355
jconsole, 355-358
JDK reactive streams API
AbstractProcessor, 541, 543, 546
calling cancel(), 539

606

FilterCharProcessor, 539, 542
filterCharProcessor.subscribe(..), 544
Flow.Publisher<Integer>
interface, 537
imperative programming, 537
implementations, 537
infinite IntStream, 548
mapping function, 544-545
processor/subscriber, flow, 541-542
publisher subscribe(..), 539
start() method, 539
SubmissionPublisher
<Integer>, 537-539
subscribe(..) calls, 547
subscribe() method, 539
subscription.request(..), 539
transformerProcessor, 546
JetBrains, 39
jlink, 67
jps, 351-352
JShell, 409
JSP Standard Tag
Library (JSTL), 465-466
JUnit
@AfterAll, 374
@AfterEach, 375
annotations, 374
@BeforeAll, 374
@BeforeEach, 374
@DisplayName, 375
FakeDBConnection
Account instance, 378
AccountRepolmpl, 378-380
DbConnection implementation,
380, 381
deleteByHolder method, 382-384
DerbyDBConnection, 378
Map<String, Account>, 382

mocks
classes, 393
createAccount(..) method, 393, 394
findOne(..) method, 395
Gradle test reports, 395-396
@InjectMocks and @Mock,
394-395
libraries, 395
objects and variables, 395
PowerMock, 393
pseudo test class, 375-376
execution, 377
junit-platform.properties, 376
menu option, Intelli] IDEA, 377
testOne() method, 378
stubs
AccountServicelmpl, 384
assertThrows, 389-392
createAccount(...)
method, 385-386
option field, 388
repo stub, 387-388
returned values and
exceptions, 386
test coverage, 387
testNonNumericAmountVersion
One() method, 389, 390
write test, 388-389
@Test, 375

Lambda expression, 95

Last In, First Out (LIFO), 154
Lazy loading, 178

Looping statements, 257

do-while
code block execution, 268

implementation, 268, 270-271
vs. while flowcharts, 269
for
Arrays utility class, 263
code, 257, 260-261
condition, 259-260
enhanced syntax, 262
flowchart, 258
square brackets, 258
Loops, breaking
break statement, 271-273
continue statement, 271, 273-274
return statement, 271, 275-276

Maven repository, 85
Member-level accessors, 63
Methods, 115-117
Module descriptor, 64
Module hell, 60
Modules
compile, manually, 84
defined, 64
directives, 67
IDE generate, 83
Java 9 project, 65, 66
Java 10, 67
java--list-modules, 66
JDK, 64
keywords, 67-68
limit access, 69
module-info.class descriptor, 84
module-info.java, 64, 68
public types, 68
requires keyword, 68
SimpleReader class, 65
Modulus operator, 222

INDEX

607

INDEX

N

NetBeans, 23

NG reactive publisher, 551
Non-blocking back-pressure, 534
NullPointerException, 283
Numerical operators, 214

o)
Object types
classes (see Classes)
enums, 125-128
interfaces (see Interfaces)
Operators
assignment, 209-210
category, 207-208
explicit conversion, 211-213
numerical
binary, 217, 219-223
Elvis operator, 241
logical, 233-237
negation, 216
relational, 223, 225-226
shift, 238, 240-241
sign, 215-216
unary, 214-215
Oracle, 55
JavaFX 2.0, 16
Java SE 7, 15-16
Java SE 8, 16-17
JavaSE 9, 17-18
Java SE 10, 19
Java SE 11, 20

PQ

Package, 56, 81
Parallel collector, 565

608

parallelStream() method, 286
Path handlers
compareTo(..) method, 479
createFile(...), 482
delete(..), 482
getFileName(), 480
getFileSystem(), 480
getRoot(), 480
IOException, 482
java.nio.file.Path, 478
Paths.get(fileURI), 478-479
properties, 481
resolve(..), 480
sample code, 481
toAbsolutePath(), 480
peek(..) method, 308, 310
Performer hierarchy, 211
Point-to-point (p2p) messaging
model, 531
Polymorphism, 119
Primitive data types
binary representation, 168-169
boolean type, 165-166
byte, 169
char type, 166-167
= (equals) operator, 159
float and double, 170-171
int, 169
integer primitives, 167
long, 170
numeric types, 167-168
numeric values, 171, 173
real primitives, 170-171, 173
short, 169
stack, 160-161
swap() method, 160
Project Jigsaw, 64
Project reactor

advantage, 552
empty() method, 556
Flux and Mono, 556
flux publisher implementation, 553
interval(..) method, 557
JDK-based implementation, 557
operators, 552
org.reactivestreams.
Subscriber<T>, 553, 554

reactive publisher, 555
reactor.core.CoreSubscriber<T>, 554
subscriber, write, 553-554

Public class, 61

R

Reactive Manifesto, 532
Reactive producer/consumer system, 533
Reactive programming
flow interfaces, 535
producer/consumer system, 533
reactive streams API, 534-535
standard API, 534
streams API implementations, 535-536
Reactive streams API
implementations, 535-536
Reactive streams interfaces, 534-535
Reactive Streams Technology
Compatibility Kit, 548, 550-551
Read-Eval-Print Loop (REPL), 49
Reading files, 482
Files.readAllBytes(..), 484
InputStream, 489-492
Reader class
BufferedReader, 485-486, 488
Files.newBufferedReader, 489
Files.newBufferedReader(Path)
method, 487

INDEX

hierarchy, 488
java.io.Closeable interface, 486
lambda expressions, 487
nullReader(), 489
StringBuilder, 488
Scanner class, 482
utility methods, 484
Reading user data
Scanner
advantage, 412
console.format(..), 419
console methods, 418
java.io.Console, 417
long values, 416
next..() methods list, 411-412
ReadingUsingConsoleDemo, 420
read value, 412-415
sample code, 418-419
System.in, 411
templates, 419
usage, 415-416
System.in, 410-411
Real primitives
boxing and unboxing, 173
double, 171
float, 170
numeric values, 171, 173
Reference data types
arrays
initialization, 178-179
int type, 179
lazy loading, 178
null keyword, 177-178
square brackets, 179
class and interface hierarchy, 174
class constructor, 173
collections, 196
date time API, 191

609

INDEX

Reference data types (cont.)
escaping characters, 187
heap, 161-163
java.lang.Thread class, 201-202
lambda expressions, 205
run() method, 202
CounterRunnable code, 205
runnable code, 204-205
stack and heap memory, 174-176
start() method, 203
string, 183
swap() method, 163-165
Thread.currentThread() method, 205
thread management, 206
wrapper classes, 189

Regression tests, 371

Run-time polymorphism, 119

S

Serial collector, 564
Serialization, 502
binary, 503-507
JSON, 511-513
XML, 507-511
sorted() operation, 313
Stack and heap memory
add() method, 157
definition, 153-154
java.lang.String class, 154
JVM parameters, 154
main() method, 158
object declaration, 156
String Pool, 155
variable declaration, 155-156
Stream API
Consumer, 285-286
creation

610

from arrays, 287, 289
collection interfaces and
classes, 284
empty streams, 289
finite streams, 289
IntStream instance, 292-293
LongStream instances, 293
stream of primitives, 292
stream of strings, 294
debugging, code, 310
anyMatch(..), 309-310
findAny(), 309-310
peek(..), 310
dropWhile, 292
functions, 282
interfaces, 293
intermediate operation
add(..), 289
allMatch(..), 309-310
anyMatch(..) method, 309
collect(..) method, 303
count(), 306
distinct() method, 306
filter(..) method, 302
findAny(), 309-310
findFirst(), 306
flatMap(..) method, 304-305
limit(..) method, 307
map(..) method, 303
noneMatch, 310
Optimal<T> instance, 309
parallelStream(), 286-287
peek(..), 310
sorted() method, 306
toArray() method, 302
iterate, 285
java.util.function.Supplier, 290
java.util.stream.BaseStream, 282

limit, 289-290, 307
NullPointerException, 283
Optimal, 309
Optional, 283, 295-298, 303-306, 309
parallel data processing, 282
range, 293
rangeClosed, 293
Stream, 281-294, 298-300
Stream.builder(), 289
Stream.generate(), 289
takeWhile, 291-292
terminal functions

forEach and forEachOrdered,

300, 302

sum and reduce, 307-308
terminal operations, 283

min() and max(), 307

transform collections into streams, 283

String.format(..) method, 231-232
String Pool, 154, 183-184
splitAsStream, 294
Sun Microsystem’s Java Versions
features, 11-12
J2EE, 11
J2ME, 11
J2SE, 11
J2SE 5.0, 12-13
Java FX 1.0 SDK, 14
Java official logo, 12
JRE, 10
Mac OS X, 13
Oracle features, 14
Swing
AWT model, 420-422
border layout zones, 426
components, 14
FlowLayout, 427
getInstalledLookAndFeels(), 429

INDEX

getValuelsAdjusting(), 429
java.awt.BorderLayout, 425-426
java.awt.event.ActionListener, 427
javax.swing.JFrame, 423
JComponent, 425
JFrame, 424-425
JFrame.EXIT_ON_CLOSE, 424
JList<T> class, 428
JScrollPane, 429
JTextArea, 428
ListSelectionListener
implementation, 430, 431

Operation System, 429
UIManager class, 429
Windows, 423, 431

Switch Statement
code, 250-251
flowchart, 252, 255-256
NullPointerExceptions, 254-255

T

Terminal operations, 283, 298
Test-driven development (TDD), 371
Testing
application
account management, 373
AccountRepo, 373
AccountService, 373
JUnit (see JUnit)
Oracle RDBMS, 373
development phase, 371
Gradle module structure, 371-372
integration tests, 371
ISTQB, 370
lifecycle of software application, 370
regression tests, 371
src directory, 372

611

INDEX

Testing (cont.)
TDD, 371
unit tests, 371
Thread local allocation buffer
(TLAB), 570
toBinaryString method, 227

uv

Unboxing, 190

Unchecked exceptions, 143

Uniform Resource Identifier (URI), 474
Unit tests, 371

w

Web application
Apache Tomcat server, 451
DateServlet, 467-468
embedded Tomcat server, 453-454
HttpServletRequest, 457-458
index.jsp page, 463-466
Internet, 451
JavaScript, 468

javax.servlet.http.HttpServlet, 456-457

JSP scriptlets, directive tags, 463
JSTL, 465-466

network debugger view, Firefox, 452

request method, 452-453
resource/dynamic directory, 461

612

SampleServlet, 461-462
servers, 450
servlets and JSP, 455-456
structure, 460-461
URL, context path value, 454-455
urlPattern property, 457
@WebServlet, 458-459
Writing files
Files.write(..), 493-494
Files.write(Path, byte[]), 492
Files.writeString(..), 493
OutputStream, 499-502
Writer class
BufferedWriter, 495, 498
Files.newBufferedWriter(..), 497
flush() method, 495
hierarchy, 498
nullWriter(), 499
OutputStreamWriter, 499
PrintWriter, 499
String instances, 495, 496
StringWriter, 499

X, Y

XML serialization, 507-511

Y4

zipWith(..) method, 557

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: An Introduction to Java and Its History
	Who This Book Is For
	How This Book Is Structured
	Conventions
	When Java Was Owned by Sun Microsystems
	Why Is Java Portable?
	Sun Microsystem’s Java Versions

	Oracle Takes Over
	What the Future Holds
	Prerequisites

	Chapter 2: Preparing Your Development Environment
	Installing Java
	The JAVA_HOME Environment Variable
	JAVA_HOME on Windows
	JAVA_HOME on macOS
	JAVA_HOME on Linux

	Installing Gradle
	Installing Git
	Installing a Java IDE
	Summary

	Chapter 3: Getting Your Feet Wet
	Using JShell
	Java Fundamental Building Blocks
	Access Modifiers
	Introducing Modules
	Configuring Modules
	Determining the Structure: A Java Project
	The HelloWorld! Project in IntelliJ IDEA
	The HelloWorld! Project Compiled and Executed Manually
	Putting the HelloWorld Class in a Package
	Configuring the com.sandbox Module
	Java Projects Using Build Tools (Mostly Gradle)

	Explaining and Enriching the Hello World! Class
	Summary

	Chapter 4: Java Syntax
	Base Rules of Writing Java Code
	Package Declaration
	Import Section
	Java “Grammar”
	Java Identifiers
	Java Comments

	Java Object Types
	Classes
	Fields
	Class Variables
	Encapsulating Data
	Methods
	Constructors
	Abstraction

	Enums
	Interfaces
	Default Methods
	Annotation Types

	Exceptions
	Generics
	Java Reserved Words
	Summary

	Chapter 5: Data Types
	Stack and Heap Memory
	Introduction to Java Data Types
	Primitive Data Types
	Reference Data Types

	Java Primitive Types
	The Boolean Type
	The char Type
	Integer Primitives
	Real Primitives

	Java Reference Types
	Arrays
	The String Type
	Escaping Characters
	Wrapper Classes
	Date Time API
	Collections
	Concurrency Specific Types

	Summary

	Chapter 6: Operators
	The Assignment Operator (=)
	Explicit Type Conversion (type) and instanceof
	Numerical Operators
	Unary Operators
	Incrementors and Decrementors
	Sign Operators
	Negation Operator

	Binary Operators
	Relational Operators
	Bitwise Operators
	Bitwise NOT
	Bitwise AND
	Bitwise Inclusive OR
	Bitwise Exclusive OR
	Logical Operators
	Shift Operators
	The Elvis Operator

	Summary

	Chapter 7: Controlling the Flow
	if-else Statement
	switch Statement
	Looping Statements
	for Statements
	while Statement
	do-while Statement

	Breaking Loops and Skipping Steps
	break Statement
	continue Statement
	return Statement

	Controlling the Flow Using try-catch Constructions
	Summary

	Chapter 8: The Stream API
	Introduction to Streams
	Creating Streams
	Creating Streams from Collections
	Creating Streams from Arrays
	Creating Empty Streams
	Creating Finite Streams
	Streams of Primitives and Streams of Strings
	A Short Introduction to Optional

	How to Use Streams
	Terminal Functions: forEach and forEachOrdered
	Intermediate Operation filter and Terminal Operation toArray
	Intermediate Operations map and flatMap and Terminal Operation collect
	Intermediate Operation sorted and Terminal Operation findFirst
	Intermediate Operation distinct and Terminal Operation count
	Intermediate Operation limit and Terminal Operations min and max
	Terminal Operations sum and reduce
	Intermediate Operation peek
	Intermediate Operation skip and Terminal Operations findAny, anyMatch, allMatch, and noneMatch

	Debugging Stream Code
	Summary

	Chapter 9: Debugging, Testing, and Documenting
	Debugging
	Logging
	Logging with JUL

	Logging with SLF4J and Logback
	Debug Using Assertions
	Step-by-Step Debugging
	Inspect Running Application Using Java Tools
	jps
	jcmd
	jconsole
	jmc

	Accessing the Java Process API
	Testing
	A Small Introduction to Testing
	Test Code Location
	Application to Test
	Introducing JUnit
	Using Fakes
	Using Stubs
	Using Mocks

	Documenting
	Summary

	Chapter 10: Making Your Application Interactive
	Reading Data from the Command Line
	Reading User Data Using System.in
	Using Scanner
	Reading User Data with java.io.Console

	Build Applications Using Swing
	Introducing JavaFX
	Internationalization
	Build a Web Application
	Summary

	Chapter 11: Working with Files
	File Handlers
	Path Handlers
	Reading Files
	Using Scanner to Read Files
	Using Files Utility Methods to Read Files
	Using Readers to Read Files
	Using InputStream to Read Files

	Writing Files
	Writing Files Using Files Utility Methods
	Using Writers to Write Files
	Using OutputStream to Write Files

	Serialization and Deserialization
	Binary Serialization
	XML Serialization
	JSON Serialization

	The Media API
	Using JavaFX Image Classes
	Summary

	Chapter 12: The Publish/Subscribe Framework
	Reactive Programming and the Reactive Manifesto
	Using the JDK Reactive Streams API
	Reactive Streams Technology Compatibility Kit
	Using Project Reactor
	Summary

	Chapter 13: Garbage Collection
	Garbage Collection Basics
	Oracle Hotspot JVM Architecture
	How Many Garbage Collectors Are There?

	Working with GC from the Code
	Using the finalize() Method
	Heap Memory Statistics
	Using Cleaner
	Preventing GC from Deleting an Object
	Using Weak References

	Garbage Collection Exceptions and Causes
	Summary

	Index

